线性代数矩阵的可逆证明题求助
1:设方阵A满足A^2 - A - 2E = 0 , 证明A及A+2E都可逆,并求出A(-1)及(A+2E)(-1)
2:设A^k = 0(k为正整数),证明:(E-A)(-1) = E + A + A^2 + …… + A^(k-1)
线性代数矩阵的可逆证明题求助
答案:2 悬赏:10 手机版
解决时间 2021-12-28 22:55
- 提问者网友:风月客
- 2021-12-28 16:12
最佳答案
- 五星知识达人网友:長槍戰八方
- 2021-12-28 16:56
1.证明:因为 A^2 - A - 2E = 0
所以 A(A-E)/2 = E
所以 A可逆,且 A^-1 = (1/2)(A-E).
又由 A^2 - A - 2E = 0
得 A(A+2E) -3A-2E = 0
A(A+2E) -3(A+2E) +4E = 0
所以 (A-3E)(A+2E) = -4E.
所以A+2E可逆,且 (A+2E)^-1 = (-1/4)(A-3E).
2.证明:因为A^k = 0,所以
(E-A)(E + A + A^2 + …… + A^(k-1))
= E + A + A^2 + …… + A^(k-1) - A - A^2 - …… - A^(k-1) - A^k
= E - A^k
= E.
所以 E-A 可逆,且 (E-A)^-1 = E + A + A^2 + …… + A^(k-1)
全部回答
- 1楼网友:酒醒三更
- 2021-12-28 18:00
我检查一下我的答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯