永发信息网

【价层电子对互斥理论】求杂化轨道理论和价层电子对互斥理论的详解这里一点...

答案:2  悬赏:0  手机版
解决时间 2021-03-01 23:19
  • 提问者网友:练爱
  • 2021-03-01 01:48
【价层电子对互斥理论】求杂化轨道理论和价层电子对互斥理论的详解这里一点...
最佳答案
  • 五星知识达人网友:鱼芗
  • 2021-03-01 03:02
【答案】 1 杂化轨道:
  在形成分子的过程中,由于原子间的相互影响,若干类型不同而能量相近的原子轨道相互混杂,
  重新组合成一组能量相等,成分相同的新轨道,这一过程称为杂化.经过杂化而形成的新轨道叫做杂化轨道,杂化轨道与其他原子轨道重叠时形成σ共价键.原子在形成分子的过程中,为了使所成化学键强度更大,更有利于体系能量的降低,总趋向于将原来的原子轨道进一步线性组合,以形成新的原子轨道.
  价键理论的论证
   价键理论对共价键的本质和特点做了有力的论证,但它把讨论的基础放在共用一对电子形成一个共价键上,在解释许多分子、原子的价键数目及分子空间结构时却遇到了困难.例如C原子的价电子是2s22p2,按电子排布规律,2个s电子是已配对的,只有2个p电子未成对,而许多含碳化合物中C都呈4价而不是2价,可以设想有1个s电子激发到p轨道去了.那么1个s轨道和3个p轨道都有不成对电子,可以形成4个共价键,但s和p的成键方向和能量应该是不同的.而实验证明:CH4分子中,4个 C-H共价键是完全等同的,键长为114pm,键角为109°28'.BCl3,BeCl2,PCl3等许多分子也都有类似的情况.为了解释这些矛盾,1928年鲍林(Pauling)提出了杂化轨道概念[1],丰富和发展了的价键理论.他根据量子力学的观点提出:在同一个原子中,能量相近的不同类型的几个原子轨道在成键时,可以互相叠加重组,成为相同数目、能量相等的新轨道,这种新轨道叫杂化轨道.C原子中 1个2s电子激发到2p后,1个2s轨道和3个2p轨道重新组合成4个sp3杂化轨道,它们再和4个H原子形成4个相同的C-H键,C位于正四面体中心,4个H位于四个顶角.
  相关种类
   杂化轨道种类很多,如三氯化硼(BCl3)分子中B有sp2杂化轨道,即由1个s轨道和2个p轨道组合成3个sp2杂化轨道,在氯化铍(BeCl2)中有sp杂化轨道,在过渡金属化合物中还有d轨道参与的sp3d和 sp3d2杂化轨道等.以上几例都是阐明了共价单键的性质,至于乙烯和乙炔分子中的双键和三键的形成,又提出了σ键和π键的概念.如把两个成键原子核间联线叫键轴,把原子轨道沿键轴方向“头碰头”的方式重叠成键,称为σ键.把原子轨道沿键轴方向“肩并肩”的方式重叠,称为π键.例如在乙烯(CH2= CH2)分子中有碳碳双键(C=C),碳原子的激发态中2px,2py和2s形成sp2杂化轨道,这3个轨道能量相等,位于同一平面并互成120℃夹角,另外一个pz轨道未参与杂化,位于与平面垂直的方向上.碳碳双键中的sp2杂化如下所示.
   这3个sp2杂化轨道中有2个轨道分别与2个H原子形成σ单键,还有1个sp2轨道则与另一个 C的sp2轨道形成头对头的σ键,同时位于垂直方向的pz轨道则以肩并肩的方式形成了π键.也就是说碳碳双键是由一个σ键和一个π键组成,即双键中两个键是不等同的.π键原子轨道的重叠程度小于σ键,π键不稳定,容易断裂,所以含有双键的烯烃很容易发生加成反应,如乙烯(H2C=CH2)和氯 (Cl2)反应生成氯乙烯(Cl—CH2—CH2—Cl).
   乙炔分子(C2H2)中有碳碳叁键 (HC≡CH),激发态的C原子中2s和2px轨道形成sp杂化轨道.这两个能量相等的sp杂化轨道在同一直线上,其中之一与H原子形成σ单键,另外一个 sp杂化轨道形成C原子之间的σ键,而未参与杂化的py与pz则垂直于x轴并互相垂直,它们以肩并肩的方式与另一个C的py,pz形成π键.即碳碳三键是由一个σ键和两个π键组成.这两个π键不同于σ键,轨道重叠也较少并不稳定,因而容易断开,所以含三键的炔烃也容易发生加成反应.
   杂化轨道限于最外层电子,而在第一层的两个电子不参与反应,而在其他层上有许多的轨道,电子会从能量低的层“跃迁”到能量高的层,而原来能量低的层是因为电子的运动方向相反,而跃迁以后电子就只向一种方向运动,所以能量会高.并且反应以后组成的能量介于原来的S轨道和P轨道能量之间.
  几种杂化轨道之后的分子空间形态
   sp杂化:直线型
   sp2杂化:平面三角形(等性杂化为平面正三角形)
   sp3杂化:空间四面体(等性杂化为正四面体)
  2 价电子对互斥理论
  一个分子的中心原子究竟采取哪种类型的轨道杂化,直接可以预测整个分子的空间构型. 杂化轨道理论成功地解释了部分共价分子杂化与空间构型关系,但是,仅用杂化轨道理论预测有时是难以确定的.1940年美国的Sidgwick NV等人相继提出了价层电子对互斥理论(valence shell electron pair repulsion theory),简 称VSEPR法,该法适用于主族元素间形成的ABn型分子或离子.该理论认为,一个共价分子或离子中,中心原子A周围所配置的原子B(配位原子)的几何构型,主要决定于中心原子的价电子层中各电子对间的相互排斥作用.这些电子对在中心原子周围按尽可能互相远离的位置排布,以使彼此间的排斥能最小.所谓价层电子对,指的是形成σ键的电子对和孤对电子.孤对电子的存在,增加了电子对间的排斥力,影响了分子中的键角,会改变分子构型的基本类型.根据此理论,只要知道分子或离子中的中心原子上的价层电子对数,就能比较容易而准确地判断 ABn 型共价分子或离子的空间构型.
  空间构型步骤
   价层电子对理论预测分子空间构型步骤为:
   1.确定中心原子中价层电子对数
   中心原子的价层电子数和配体所提供的共用电子数的总和除以2,即为中心原子的价层电子对数. 规定:(1)作为配体,卤素原子和H 原子提供1个电子,氧族元素的原子不提供电子;(2)作为中心原子,卤素原子按提供7个电子计算,氧族元素的原子按提供6个电子计算;(3)对于复杂离子,在计算价层电子对数时,还应加上负离子的电荷数或减去正离子的电荷数;(4)计算电子对数时,若剩余1个电子,亦当作 1对电子处理.(5) 双键、叁键等多重键作为1对电子看待.
   2.判断分子的空间构型
   根据中心原子的价层电子对数,从表9-4中找出相应的价层电子对构型后,再根据价层电子对中的孤对电子数,确定电子对的排布方式和分子的空间构型.
   实例分析:试判断PCl5 离子的空间构型.
   P离子的正电荷数为5,中心原子P有5个价电子,Cl原子各提供1个电子,所以P原子的价层电子对数为(5+5)/2 = 5,其排布方式为三角双锥.因价层电子对中无孤对电子,所以PCl5 为三角双锥构型.
   实例分析:试判断H2O分子的空间构型.
   解 :O是H2O分子的中心原子,它有 6个价电子,与O化合的2个H原子各提供1个电子,所以O原子价层电子对数为(6+2)/2 = 4,其排布方式为 四面体,因价层电子对中有2对孤对电子,所以H2O分子的空间构型为V形.
   表9-5 理想的价层电子对构型和分子构型
  实例分析
   判断HCHO分子和HCN分子的空间构型
   解分子中有1个C=O双键,看作1对成键电子,2个C-H单键为2对成键电子,C原子的价层电子对数为3,且无孤对电子,所以HCHO分子的空间构型为平面三角形.
   HCN分子的结构式为H—C≡N∶,含有1个C≡N叁键,看作1对成键电子,1个 C­H单键为1对成键电子,故C原子的价层电子对数为2,且无孤对电子,所以HCN分子的空间构型为直线.
全部回答
  • 1楼网友:舊物识亽
  • 2021-03-01 03:10
谢谢了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯