永发信息网

最优化方法的基本定义

答案:1  悬赏:0  手机版
解决时间 2021-02-21 11:05
  • 提问者网友:焚苦与心
  • 2021-02-20 16:11
最优化方法的基本定义
最佳答案
  • 五星知识达人网友:鱼芗
  • 2021-02-20 17:11
最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。本章将介绍最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用。主要是线性规划问题的模型、求解(线性规划问题的单纯形解法)及其应用――运输问题;以及动态规划的模型、求解、应用――资源分配问题。最优化方法1.微分学中求极值2.无约束最优化问题3.常用微分公式4.凸集与凸函数5.等式约束最优化问题6.不等式约束最优化问题7.变分学中求极值详细资料 最优化模型一般包括变量、约束条件和目标函数三要素:①变量:指最优化问题中待确定的某些量。变量可用x=(x1,x2,…,xn)T表示。②约束条件:指在求最优解时对变量的某些限制,包括技术上的约束、资源上的约束和时间上的约束等。列出的约束条件越接近实际系统,则所求得的系统最优解也就越接近实际最优解。约束条件可用 gi(x)≤0表示i=1,2,…,m,m 表示约束条件数;或x∈R(R表示可行集合)。③目标函数:最优化有一定的评价标准。目标函数就是这种标准的数学描述,一般可用f(x)来表示,即f(x)=f(x1,x2,…,xn)。要求目标函数为最大时可写成;要求最小时则可写成。目标函数可以是系统功能的函数或费用的函数。它必须在满足规定的约束条件下达到最大或最小。  问题的分类  最优化问题根据其中的变量、约束、目标、问题性质、时间因素和函数关系等不同情况,可分成多种类型(见表)。最优化方法最优化方法不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。反之,某些最优化方法可适用于不同类型的模型。最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。①解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。②直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。此时可采用直接搜索的方法经过若干次迭代搜索到最优点。这种方法常常根据经验或通过试验得到所需结果。对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。③数值计算法:这种方法也是一种直接法。它以梯度法为基础,所以是一种解析与数值计算相结合的方法。④其他方法:如网络最优化方法等(见网络理论)。解析性质根据函数的解析性质,还可以对各种方法作进一步分类。例如,如果目标函数和约束条件都是线性的,就形成线性规划。线性规划有专门的解法,诸如单纯形法、解乘数法、椭球法和卡马卡法等。当目标或约束中有一非线性函数时,就形成非线性规划。当目标是二次的,而约束是线性时,则称为二次规划。二次规划的理论和方法都较成熟。如果目标函数具有一些函数的平方和的形式,则有专门求解平方和问题的优化方法。目标函数具有多项式形式时,可形成一类几何规划。最优解的概念最优......余下全文>>
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯