已知An=4n-3 设数列{1/An*An+1}的前n项和Tn,求出Tn并求出Tn取值范围 速度!!!要过程!!
答案:2 悬赏:80 手机版
解决时间 2021-01-04 05:00
- 提问者网友:寂寞梧桐
- 2021-01-03 12:59
已知An=4n-3 设数列{1/An*An+1}的前n项和Tn,求出Tn并求出Tn取值范围 速度!!!要过程!!
最佳答案
- 五星知识达人网友:旧脸谱
- 2021-01-03 13:26
1/An*An+1
=(1/4)*4/(4n-3)(4n+1)
=(1/4)*[(4n+1)-(4n-3)]/(4n-3)(4n+1)
=(1/4)*[(4n+1)/(4n-3)(4n+1)-(4n-3)/(4n-3)(4n+1)]
=(1/4)*[1/(4n-3)-1/(4n+1)]
所以Tn=1/4*[1-1/5+1/5-1/9+……+1/(4n-3)-1/(4n+1)]
=1/4*[1-1/(4n+1)]
=n/(4n+1)
n>=1
4n+1>=5
0<1/(4n+1)<=1/5
4/5<=1-1/(4n+1)<1
1/5<=1/4*[1-1/(4n+1)]<1/4
所以1/5<=Tn<1/4
=(1/4)*4/(4n-3)(4n+1)
=(1/4)*[(4n+1)-(4n-3)]/(4n-3)(4n+1)
=(1/4)*[(4n+1)/(4n-3)(4n+1)-(4n-3)/(4n-3)(4n+1)]
=(1/4)*[1/(4n-3)-1/(4n+1)]
所以Tn=1/4*[1-1/5+1/5-1/9+……+1/(4n-3)-1/(4n+1)]
=1/4*[1-1/(4n+1)]
=n/(4n+1)
n>=1
4n+1>=5
0<1/(4n+1)<=1/5
4/5<=1-1/(4n+1)<1
1/5<=1/4*[1-1/(4n+1)]<1/4
所以1/5<=Tn<1/4
全部回答
- 1楼网友:山君与见山
- 2021-01-03 14:44
你好!
1/(An*An+1) = 1/An - 1/An+1
Tn = 1/A1 - 1/A2 + 1/A2 - 1/A3 + …… + 1/An - 1/An+1
= 1/A1 - 1/An+1
= 1/(4*1-3) - 1/[4*(n+1) - 3]
= 4n/(4*n+1)
所以
Tn 的取值范围是 [4/5 , 1)
如果对你有帮助,望采纳。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯