永发信息网

如图,AD为圆内接三角形ABC的外角∠EAC的平分线,它与圆交于点D,F为BC上的点.(1)求证:BD=DC;(2)请你再补充一个条件使直线DF一定经过圆心,并说明理

答案:2  悬赏:0  手机版
解决时间 2021-11-28 05:02
  • 提问者网友:风月客
  • 2021-11-27 10:37
如图,AD为圆内接三角形ABC的外角∠EAC的平分线,它与圆交于点D,F为BC上的点.
(1)求证:BD=DC;
(2)请你再补充一个条件使直线DF一定经过圆心,并说明理由.
最佳答案
  • 五星知识达人网友:人间朝暮
  • 2019-01-04 10:39
(1)证明:∵∠CDB=∠CAB,∠CAD=∠CBD,
∴∠CBD+∠CDB=∠CAB+∠CAD;
∴∠DAE=∠DCB;
又∵AD是角平分线,
∴∠DAE=∠DAC=∠DBC=∠DCB;
∴△DCB是等腰三角形,
∴DC=DB;

(2)解:若F为BC中点,则DF经过圆心;
∵△DBC是等腰三角形,
∴DF是底边中线;
∵圆内接三角形圆心是三边中垂线的交点,
∴DF必过圆心.解析分析:(1)先有圆周角定理得出∠DAE=∠DCB,再有角平分线的性质可得出∠EAD=∠DAC,判断出△DCB是等腰三角形,由等腰三角形的性质即可得出结论;
(2)根据等腰三角形的性质及圆内接四边形的性质可知若F为BC中点,则DF经过圆心.点评:本题考查的是圆内接四边形的性质及圆周角定理、等腰三角形的判定及性质,能根据圆周角定理得出△DCB是等腰三角形是解答此题的关键.
全部回答
  • 1楼网友:白昼之月
  • 2021-02-14 02:24
我好好复习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯