实数比较大小的方法是?
答案:4 悬赏:0 手机版
解决时间 2021-04-04 16:53
- 提问者网友:未信
- 2021-04-04 08:51
实数比较大小的方法是?
最佳答案
- 五星知识达人网友:冷風如刀
- 2021-04-04 10:05
1.数轴比较法
数轴的基本性质:实数与数轴上的点一一对应。
利用这条性质,将实数的大小关系转化为点的位置关系。
设数轴的正方向指向右方,则数轴上右边的点所表示的数比左边的点所表示的数要大。
点A表示数a,点B表示数b。因为点A在点B的右边,所以数a大于数b,即a>b.
2.作差比较法
若a-b>0,则a>b;
若a-b=0,则a=b;
若a-b<0,则a3.作商比较法
设b>0,有
若a/b>1,则a>b;
若a/b=1,则a=b;
若a/b<1,则a4.倒数比较法
若a>b>0,则1/a<1/b;
若a1/b;
若a<0
数轴的基本性质:实数与数轴上的点一一对应。
利用这条性质,将实数的大小关系转化为点的位置关系。
设数轴的正方向指向右方,则数轴上右边的点所表示的数比左边的点所表示的数要大。
点A表示数a,点B表示数b。因为点A在点B的右边,所以数a大于数b,即a>b.
2.作差比较法
若a-b>0,则a>b;
若a-b=0,则a=b;
若a-b<0,则a3.作商比较法
设b>0,有
若a/b>1,则a>b;
若a/b=1,则a=b;
若a/b<1,则a4.倒数比较法
若a>b>0,则1/a<1/b;
若a1/b;
若a<0
全部回答
- 1楼网友:思契十里
- 2021-04-04 11:29
做差 也可以 做商
- 2楼网友:爱难随人意
- 2021-04-04 10:53
生活中,我们经常会遇到下面的问题:比较一个企业不同季度的产值,国家去年与前年的国民生产总值等实际问题的大小,转化成数学问题,就是比较两个或多个实数的大小,比较实数大小的方法比较多,也比较灵活,现采撷几种常用的方法供大家参考。
一、法则法
比较实数大小的法则是:正数都大于零,零大于一切负数,两个负数相比较,绝对值大的反而小。
例1 比较与的大小。
析解:由于,且,所以。
说明:利用法则比较实数的大小是最基本的方法,对于两个负数的大小比较,可将它转化成正数进行比较。
二、平方法
用平方法比较实数大小的依据是:对任意正实数a、b有:。
例2 比较与的大小。
析解:由于,而,所以。
说明:本题也可以把外面的因数移到根号内,通过比较被开方数大小来比较原数的大小,目的是把含有根号的无理数的大小比较实数转化成有理数进行比较。
三、数形结合方法
用数形结合法比较实数大小的理论依据是:在同一数轴上,右边的点表示的数总比左边的点表示的数大。
例3 若有理数a、b、c对应的点在数轴上的位置如图1所示,试比较a、-a、b、-b、c、-c的大小。
析解:如图2,利用相反数及对称性,先在数轴上把数a、-a、b、-b、c、-c表示的点画出来,容易得到结论:
四、估算法
用估算法比较实数的大小的基本思路是:对任意两个正实数a、b,先估算出a、b两数的取值范围,再进行比较。
例4 比较与的大小。
析解:由于,故,所以
五、倒数法
用倒数法比较实数的大小的依据是:对任意正实数a、b有:
例5 比较与的大小
析解:因为,
又因为,
所以
所以
说明:对于两个形如(,且k是常数)的实数,常采用倒数法来比较它们的大小。
六、作差法
用作差法比较实数的大小的依据是:对任意实数a、b有:
例6 比较与的大小。
析解:设,
则
所以
七、作商法
用作商法比较实数的大小的依据是:对任意正数a、b有:
例7 比较与的大小。
析解:设,
,则
即
八、放缩法
用放缩法比较实数的大小的基本思想方法是:把要比较的两个数进行适当的放大或缩小,使复杂的问题得以简化,来达到比较两个实数的大小的目的。
例8 比较与198的大小。
析解:由于
所以
取n=2,3,4…10000代入上式,并将所得的不等式相加得:
即
所以
两个实数大小的比较,方法多种多样,在实际操作时,根据要比较的数的特点来选择适当的方法进行比较,才能方便快捷地取得准确的结果。
一、法则法
比较实数大小的法则是:正数都大于零,零大于一切负数,两个负数相比较,绝对值大的反而小。
例1 比较与的大小。
析解:由于,且,所以。
说明:利用法则比较实数的大小是最基本的方法,对于两个负数的大小比较,可将它转化成正数进行比较。
二、平方法
用平方法比较实数大小的依据是:对任意正实数a、b有:。
例2 比较与的大小。
析解:由于,而,所以。
说明:本题也可以把外面的因数移到根号内,通过比较被开方数大小来比较原数的大小,目的是把含有根号的无理数的大小比较实数转化成有理数进行比较。
三、数形结合方法
用数形结合法比较实数大小的理论依据是:在同一数轴上,右边的点表示的数总比左边的点表示的数大。
例3 若有理数a、b、c对应的点在数轴上的位置如图1所示,试比较a、-a、b、-b、c、-c的大小。
析解:如图2,利用相反数及对称性,先在数轴上把数a、-a、b、-b、c、-c表示的点画出来,容易得到结论:
四、估算法
用估算法比较实数的大小的基本思路是:对任意两个正实数a、b,先估算出a、b两数的取值范围,再进行比较。
例4 比较与的大小。
析解:由于,故,所以
五、倒数法
用倒数法比较实数的大小的依据是:对任意正实数a、b有:
例5 比较与的大小
析解:因为,
又因为,
所以
所以
说明:对于两个形如(,且k是常数)的实数,常采用倒数法来比较它们的大小。
六、作差法
用作差法比较实数的大小的依据是:对任意实数a、b有:
例6 比较与的大小。
析解:设,
则
所以
七、作商法
用作商法比较实数的大小的依据是:对任意正数a、b有:
例7 比较与的大小。
析解:设,
,则
即
八、放缩法
用放缩法比较实数的大小的基本思想方法是:把要比较的两个数进行适当的放大或缩小,使复杂的问题得以简化,来达到比较两个实数的大小的目的。
例8 比较与198的大小。
析解:由于
所以
取n=2,3,4…10000代入上式,并将所得的不等式相加得:
即
所以
两个实数大小的比较,方法多种多样,在实际操作时,根据要比较的数的特点来选择适当的方法进行比较,才能方便快捷地取得准确的结果。
- 3楼网友:神也偏爱
- 2021-04-04 10:18
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯