永发信息网

【二阶微分方程】可降阶的二阶微分方程和二阶常系数线性微分方程的区别

答案:2  悬赏:80  手机版
解决时间 2021-02-19 18:54
  • 提问者网友:像風在裏
  • 2021-02-18 20:01
【二阶微分方程】可降阶的二阶微分方程和二阶常系数线性微分方程的区别
最佳答案
  • 五星知识达人网友:轮獄道
  • 2021-02-18 21:20
【答案】 @可降阶的二阶微分方程
  1,y''=f(x)型的微分方程
  此类方程特点是 方程右端仅含有自变量x,只需积分两次便可得到方程的通解.
  2,y''=f(x,y')型的微分方程
  此类方程特点是 方程右端不显含未知函数y.
  作变量代换y'=P(x)
  3,2,y''=f(y,y')型的微分方程
  此类方程特点是 方程右端不显含自变量x.
  作变量代换y'=P(y)
  适当运用换元法简化微分方程,方便计算.
  @二阶常系数线性微分方程
  y''+a1y'+a2y=f(x) (a1,a2为常数)
  当f(x)为多项式,P(x)e^(ax),P(x)e^(ax)cosbx,P(x)e^(ax)sinbx,(a,b为实数)
  可运用特征方程求特征根解得~
  @一般二阶线性微分方程
  y''+p(x)y'+q(x)y=f(x)
  解的叠加原理
  常数变易法,(刘威尔公式)
全部回答
  • 1楼网友:杯酒困英雄
  • 2021-02-18 21:41
这下我知道了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯