永发信息网

高等数学 连续性和可导性如何证明

答案:1  悬赏:80  手机版
解决时间 2021-04-29 00:08
  • 提问者网友:情歌越听越心酸
  • 2021-04-28 13:57
高等数学 连续性和可导性如何证明
最佳答案
  • 五星知识达人网友:迷人又混蛋
  • 2021-04-28 15:34
高等数学中的函数才能谈到连续性与可导性
下面说一元函数就是只有一个自变量那种 比如f(x)=coslglnsin(4x+lnx+lgx+arcsinx+2sinx+2^x)
先提下基本初等函数 :常值函数 幂函数 指数函数 对数函数 三角函数 反三角函数
A基本初等函数复合而成的复合函数 无论多么复杂 在它定义域上连续并可导!!
证明的时候:
【1】比如要你证明该函数在x=a处连续
那么只需要
1 lim(x趋近与a+,也就是右极限,右侧的极限,加号表示大于a)f(x)=
lim(x趋近与a-,也就是左极限,左侧的极限,减号表示小于于a)f(x)
2 lim(x趋近于a)=limf(a)(此处暗含函数本身必须在x=a处有定义 否则直接判定他不连续,点都没有还如何连续)
满足上述1 2即可
这很难么?
或者对于一元函数来讲 可导必连续 可以先判定函数本身可导 那么他一定连续
牢记:对于初等函数与初等函数的复合函数而言 在定义域上 既可导又连续
【2】比如你要证明y=f(x)在x=a处可导
你先假设可导 那么有一个导函数y'=f'(x)
判定导函数导函数y'=f'(x)是否可导可按上述方法 一样的

那么只需要
1 lim(x趋近与a+,也就是右极限,右侧的极限,加号表示大于a)f'(x)=
lim(x趋近与a-,也就是左极限,左侧的极限,减号表示小于于a)f'(x)

满足上述1 即可 此处注意不需要导函数在x=a处有定义 可以说比连续的判断还要简单。
B 如果函数本身不是基本初等函数或其复合而成 那么就需要根据定义来 同样简单。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯