已知函数fx=coswx(根号3sinwx-coswx)+1/2的周期为2π.
已知函数fx=coswx(根号3sinwx-coswx)+1/2的周期为2π
在△ABC中,角A,B,C的对边分别为a,b,c,且满足2bcosA=2c-根号3a,求f(B)的值
已知函数fx=coswx(根号3sinwx-coswx)+1/2的周期为2π.
答案:1 悬赏:10 手机版
解决时间 2021-07-25 17:11
- 提问者网友:欺烟
- 2021-07-25 07:05
最佳答案
- 五星知识达人网友:爱难随人意
- 2021-07-25 08:32
f(x)=(√3sinwx-coswx)coswx+1/2
=2sin(wx-π/6)coswx+1/2
=sin(wx-π/6+wx)+sin(wx-π/6-wx)+1/2
=sin(2wx-π/6)-sinπ/6+1/2
=sin(2wx-π/6)
根据题意有:2π/2w=2π,所以w=1/2
f(x)=sin(x-π/6)
2bcosA=2c-√3a
2sinBcosA=2sinC-√3sinA
2sinBcosA=2sin(A+B)-√3sinA
2sinBcosA=2sinAcosB+2sinBcosA-√3sinA
2sinAcosB=√3sinA
因为sinA≠0
所以cosB=√3/2
B=π/6
f(B)=sin(π/6-π/6)=0
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯