永发信息网

求函数y=(x^2-3x+3)/(x-2) (x>2)的最小值 (数学高手请进)(请给予详细解答)(谢谢)

答案:3  悬赏:30  手机版
解决时间 2021-02-23 05:34
  • 提问者网友:美人性情
  • 2021-02-22 09:52
求函数y=(x^2-3x+3)/(x-2) (x>2)的最小值 (数学高手请进)(请给予详细解答)(谢谢)
最佳答案
  • 五星知识达人网友:一叶十三刺
  • 2021-02-22 11:29
用换元法,设t=x-2,t>0,则
y=(x²-3x+3)/(x-2)
=[(t+2)²-3(t+2)+3]/t
=(t²+t+1)/t
=t + 1/t + 1
≥2√(t·1/t) + 1 (当且仅当t=1/t,也就是t=1时,取“=”,此时x=t+2=3)
=3

因此当x=3时,函数y=(x²-3x+3)/(x-2) (x>2)取得最小值3。
全部回答
  • 1楼网友:第幾種人
  • 2021-02-22 13:14
用a+2来代替x,即a+2=x,则a>0
代入原方程,可以得到:
y=(a^2+a+1)/a
y=a+1/a+1
根据基本不等式,在a>0时,a+1/a>=2,当且仅当a=1/a时。
因此a=1时y有最小值3,此时x=3。
代入原式验算正确。
其中a+1/a>=2这个式子的来源为:
(a-1)^2>=0
即,a^2+1>=2a
在a>0时两边除以a可得
a+1/a>=2
  • 2楼网友:污到你湿
  • 2021-02-22 11:49
y=(x^2-3x+3)/(x-2)
y(x-2)=x^2-3x+3
x^2-(y+3)x+2y+3=0
(y+3)^2-4(2y+3)>=0
y^2>=3
y>=根号3,或y<=-根号3
而:因x>2, 所以:y=(x^2-3x+3)/(x-2)=[(x-(3/2))^2+(3/4)]/(x-2)>0
所以:y>=根号3
最小值=根号3
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯