已知a,b,c,d为实数,a+b=1,c+d=1且ac+bd>1,求证:a,b,c,d中至少有一个负数
已知a,b,c,d为实数,a+b=1,c+d=1且ac+bd>1,求证:a,b,c,d中至少有一个负数
答案:1 悬赏:20 手机版
解决时间 2021-08-23 01:10
- 提问者网友:献世佛
- 2021-08-22 01:57
最佳答案
- 五星知识达人网友:你可爱的野爹
- 2021-08-22 03:09
假设abcd没有一个负数
又因为a+b=1.c+d=1
所以abcd都大于等于0小于等于1
则a=1-b,c=1-d
ac+bd=(1-b)(1-d)+bd=1-b-d+2bd>1
b(d-1)+d(b-1)>0
因为0≤d≤1,0≤b≤1
所以-1≤d-1≤0,-1≤b-1≤0
而b≥0,d≥0
所以b(d-1)≤0,d(b-1)≤0
他们相加=0
所以只有b(d-1)=d(b-1)=0
若b=0,则由d(b-1)=0得到d=0
则由a+b=1.c+d=1
a=c=1
但这和ac+bd>1矛盾
所以a,b,c,d中至少有一个负数
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯