永发信息网

简述在同一直角坐标系中图形的变换与点的坐标变化的关系

答案:2  悬赏:40  手机版
解决时间 2021-02-03 15:59
  • 提问者网友:浮克旳回音
  • 2021-02-03 00:53
简述在同一直角坐标系中图形的变换与点的坐标变化的关系
最佳答案
  • 五星知识达人网友:我住北渡口
  • 2021-02-03 02:23
24.6图形的变换与坐标卓正刚 教学内容 本节课主要学习图形的变换,如:平移、旋转轴对称、放大或缩小后点的坐标变化. 教学目标 1.知识与技能. 理解点或图形的变化引起的坐标的变化规律,以及图形上的点的坐标的某种变化引起的图形变换,并应用于实际问题中. 2.过程与方法. 经历图形坐标变化与图形平移、旋转、放大、缩小等之间的关系,发展学生的形象思维. 3.情感、态度与价值观. 培养数形结合的思想,感受图形上点的坐标变化与图形变化之间的关系,认识其应用价值. 重难点、关键 1.重点:图形坐标变化与图形变换之间的关系. 2.难点:图形坐标变化与图形变换规律的探究. 教学过程 一、创设情境,操作感知 问题牵引1.(投影显示)如图,将点A(-3,-2)向右平移4个单位长度,得到点A1在图上标出这个点,并写出它的坐标,把点A向上平移5个单位长度呢?把点A向左或向下平移,观察它们的变化,你能从中发现什么规律吗?再找几个点试一试! 学生活动:在坐标纸上动手画图,感受其规律,并与同伴交流,归纳点的移动规律. 形成规律,在平面直角坐标系中,将点(x,y)向右或(左)平移a个单位长度,可以得到对应点(x+a,y),或(x-a,y);将点(x,y)向上(或向下)平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b). 拓展延伸:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移. 二、范例学习,应用所学 1.例:如图,三角形ABC三个顶点的坐标分别为A(4,4),B(3,1),C(1,3). (1)将△ABC三个顶点的横坐标都减去5,纵坐标不变,分别得到A′、B′、C′,依次连接A′、B′、C′各点,所得△A′B′C′与原△ABC大小、形状和位置上有什么关系?(2)将△ABC三个顶点的纵坐标都减去4,横坐标不变,分别得到点A″、B″、C″,依次连接A″、B″、C″各点,所得△A″B″C″与△ABC大小、形状和位置上有什么关系? 2.教师活动:操作投影仪,讲例. 学生活动:观察、应用前面总结的坐标平移规律,解决例题. 思路点拨:所得△A′B′C′与△ABC形状、大小完全相同.△A′B′C′可以看作将三角形ABC向左平移5个单位长度得到.类似地有△A″B″C″与△ABC形状、大小不变,且是由△ABC向下平移4个单位得到的. 三、随堂练习,巩固深化1、如图,三角形ABC中任意一点P(-2,2)经平移后对应点为P1(3,5),将三角形ABC作同样的平移得到△A1B1C1,求点A1,B1,C1的坐标. 思路点拨:本题给出P(-2,2)与P1(3,5)的坐标.应从P、P1中找到一般规律:P→P1是将P点横坐标都加上5,纵坐标都加3得到P1坐标,由此,可得到A1、B1、C1坐标. 2.课本P76例. 问题延伸:在课本图24.6.4中,△AOB关于x轴的轴对称图形是△A′OB,对应顶点的坐标有什么变化? 学生活动:应用轴对称观点得出O、B两点坐标不变,点A坐标与点A′坐标关于x轴对称,即点A′(2,-4). 问题拓展:请同学们在课本图24.6.5上画出△OAB关于y轴对称的图形并写出相应的坐标.网上找的,希望对你有帮助
全部回答
  • 1楼网友:归鹤鸣
  • 2021-02-03 02:53
我好好复习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯