一道数学难题,
一道数学难题,
答案:1 悬赏:60 手机版
解决时间 2021-05-21 14:20
- 提问者网友:世勋超人
- 2021-05-20 18:33
最佳答案
- 五星知识达人网友:摆渡翁
- 2021-05-20 19:01
证明:延长CE交BA的延长线于点F
∵∠BAC=90
∴∠CAF=∠BAC=90,∠ABD+∠ADB=90
∵∠ADB=∠CDE
∴∠ABD+∠CDE=90
∵CE⊥BE
∴∠ACF+∠CDE=90,∠BEF=∠BEC=90
∴∠ACF=∠ABD
∵AB=AC
∴△ABD≌△ACF (ASA)
∴BD=CF
∵BD平分∠ABC
∴∠ABD=∠CBD
∵BE=BE
∴△CBE≌△FBE (ASA)
∴CE=FE=CF/2
∴CE=BD/2
∴BD=2CE
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯