函数f(x)=x²-2ax 3a²-a 1在区间[0,1]上有最小值4,求a的值
答案:2 悬赏:30 手机版
解决时间 2021-02-28 05:52
- 提问者网友:酱爆肉
- 2021-02-27 21:08
谢谢!
最佳答案
- 五星知识达人网友:山君与见山
- 2021-02-27 21:16
f(x)=x²-2ax+3a²-a+1
=(x-a)²+2a²-a+1
开口向上,对称轴x=a,
且x∈[0,1]
①a>1时,
对称轴位于区间右侧,
此时f(x)单调递减,
∴f(x)|min=f(1)=3a²-3a+2.
∴3a²-3a+2=4,
解得,a=(3+√33)/6,
另一根小于1,舍.
②0≤a≤1时,
对称轴在区间内,
最小值在图象最低点即顶点取得,
∴f(x)|min=f(a)=2a²-a+1,
∴2a²-a+1=4
解得,a=3/2或a=-1,
都与0≤a≤1矛盾,舍.
③a<0时,对称轴位于区间左侧,
此时f(x)单调递增,
∴f(x)|min=f(0)=3a²-a+1
∴3a²-a+1=4
解得,
a=(1-√37)/6,
或a=(1+√37)/6(与a<0矛盾,舍)。
=(x-a)²+2a²-a+1
开口向上,对称轴x=a,
且x∈[0,1]
①a>1时,
对称轴位于区间右侧,
此时f(x)单调递减,
∴f(x)|min=f(1)=3a²-3a+2.
∴3a²-3a+2=4,
解得,a=(3+√33)/6,
另一根小于1,舍.
②0≤a≤1时,
对称轴在区间内,
最小值在图象最低点即顶点取得,
∴f(x)|min=f(a)=2a²-a+1,
∴2a²-a+1=4
解得,a=3/2或a=-1,
都与0≤a≤1矛盾,舍.
③a<0时,对称轴位于区间左侧,
此时f(x)单调递增,
∴f(x)|min=f(0)=3a²-a+1
∴3a²-a+1=4
解得,
a=(1-√37)/6,
或a=(1+√37)/6(与a<0矛盾,舍)。
全部回答
- 1楼网友:一把行者刀
- 2021-02-27 22:31
没看懂什么意思?
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯