永发信息网

填空题甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每

答案:2  悬赏:0  手机版
解决时间 2021-01-04 23:40
  • 提问者网友:遁入空寂
  • 2021-01-04 00:20
填空题 甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每次取6张或(6﹣k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有________张.
最佳答案
  • 五星知识达人网友:轻熟杀无赦
  • 2021-01-04 00:31
108解析解:设甲a次取(4﹣k)张,乙b次取(6﹣k)张,则甲(15﹣a)次取4张,乙(17﹣b)次取6张,则甲取牌(60﹣ka)张,乙取牌(102﹣kb)张则总共取牌:N=a(4﹣k)+4(15﹣a)+b(6﹣k)+6(17﹣b)=﹣k(a+b)+162,从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大,由题意得,a≤15,b≤16,又最终两人所取牌的总张数恰好相等,故k(b﹣a)=42,而0<k<4,b﹣a为整数,则由整除的知识,可得k可为1,2,3,①当k=1时,b﹣a=42,因为a≤15,b≤16,所以这种情况舍去; ②当k=2时,b﹣a=21,因为a≤15,b≤16,所以这种情况舍去;③当k=3时,b﹣a=14,此时可以符合题意,综上可得:要保证a≤15,b≤16,b﹣a=14,(a+b)值最大,则可使b=16,a=2;b=15,a=1;b=14,a=0;当b=16,a=2时,a+b最大,a+b=18,继而可确定k=3,(a+b)=18,所以N=﹣3×18+162=108张.
全部回答
  • 1楼网友:封刀令
  • 2021-01-04 01:43
好好学习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯