易求b=a-1
中值相依切线的定义是:在函数图像上有两点A(X1,Y1)B(X2,Y2) X1<X2 ,当存在M(X0,Y0), x0 在x1,x2之间 X0=(X1+X2)/2 且 M点的切线的斜率 等于直线AB的斜率 则称存在中值相依切线 问f(x)是否存在中值相依切线.
已知函数f(x)=inx-(1/2)ax^2+bx (a>0)且f'(1)=0 证是否存在”中值相依切线”
答案:3 悬赏:60 手机版
解决时间 2021-02-13 23:29
- 提问者网友:像風在裏
- 2021-02-13 12:50
最佳答案
- 五星知识达人网友:青尢
- 2021-02-13 13:43
不存在。反证法
证明:
不妨假设存在中值相依切线则有
f'(x0)=[f(x2)-f(x1)]/(x2-x1),0<x1<x2......(*)
其中:
f(x2)=lnx2-(1/2)ax2²+bx2......(1)
f(x1)=lnx1-(1/2)ax1²+bx1......(2)
x0=(x2+x1)/2......(3)
f'(x0)=1/x0-ax0+b......(4)
代入有
[lnx2-(1/2)ax2²+bx2]-[lnx1-(1/2)ax1²+bx1]=(x2-x1)(1/x0-ax0+b)
整理恰好消去a,b得
ln(x2/x1)-2(x2-x1)/(x2+x1)=0
ln(x2/x1)-2[(x2/x1)-1]/[(x2/x1)+1]=0......(5)
我们令x2/x1=t>1,并记
g(t)=lnt-2(t-1)/(t+1),t>1
求导易得
g'(t)=(t-1)²/[t(t+1)²]>0,t>1
则g(t)在t>1上单调增加
又g(t)可在t=1处连续则
g(t)>g(1)=0,t>1
即lnt-2(t-1)/(t+1)>0
亦即ln(x2/x1)-2[(x2/x1)-1]/[(x2/x1)+1]>0......(6)
显然(5),(6)两式相矛盾
因此f'(x0)=[f(x2)-f(x1)]/(x2-x1),0<x1<x2......(*)该式是不成立的
所以f(x)是不存在中值相依切线的
证毕.
证明:
不妨假设存在中值相依切线则有
f'(x0)=[f(x2)-f(x1)]/(x2-x1),0<x1<x2......(*)
其中:
f(x2)=lnx2-(1/2)ax2²+bx2......(1)
f(x1)=lnx1-(1/2)ax1²+bx1......(2)
x0=(x2+x1)/2......(3)
f'(x0)=1/x0-ax0+b......(4)
代入有
[lnx2-(1/2)ax2²+bx2]-[lnx1-(1/2)ax1²+bx1]=(x2-x1)(1/x0-ax0+b)
整理恰好消去a,b得
ln(x2/x1)-2(x2-x1)/(x2+x1)=0
ln(x2/x1)-2[(x2/x1)-1]/[(x2/x1)+1]=0......(5)
我们令x2/x1=t>1,并记
g(t)=lnt-2(t-1)/(t+1),t>1
求导易得
g'(t)=(t-1)²/[t(t+1)²]>0,t>1
则g(t)在t>1上单调增加
又g(t)可在t=1处连续则
g(t)>g(1)=0,t>1
即lnt-2(t-1)/(t+1)>0
亦即ln(x2/x1)-2[(x2/x1)-1]/[(x2/x1)+1]>0......(6)
显然(5),(6)两式相矛盾
因此f'(x0)=[f(x2)-f(x1)]/(x2-x1),0<x1<x2......(*)该式是不成立的
所以f(x)是不存在中值相依切线的
证毕.
全部回答
- 1楼网友:夜风逐马
- 2021-02-13 16:25
存在。
先求出df/dx,得到f'(x)=1/x-ax+b
我们假设A.B点的坐标分别为A(X1,Y1)B(X2,Y2) X1<X2.。那么AB点的斜率K可以求出
K=(lnx2-lnx1)/(x2-x1)-1/2*a(x2+x1)+b
现在我们再看M点,即M(X0,Y0)点的f(x)的切线斜率K1是多少。我们知道
K1=f'(x0)=1/x0-ax0+b,而x0=(x1+x2)/2.。所以K1=2/(x2-x1)-1/2*a(x2+x1)+b
所以只要lnx2-lnx1=2,即ln(x2/x1)=2.。所以有x2+x1=e^2.。也就是只要满足这个等式,就能找出”中值相依切线”。
- 2楼网友:渡鹤影
- 2021-02-13 14:56
1楼答案有错,x0=(x1+x2)/2.。所以K1=2/(x2-x1)-1/2*a(x2+x1)+b,这部有错。应该是x2+x1不是x2-x1,我也正在做这题,同求答案。
再看看别人怎么说的。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯