什么是“断点回归法”,它的主要原理?
答案:2 悬赏:20 手机版
解决时间 2021-03-26 06:48
- 提问者网友:暮烟疏雨之际
- 2021-03-26 00:12
什么是“断点回归法”,它的主要原理?
最佳答案
- 五星知识达人网友:老鼠爱大米
- 2021-03-26 00:38
在因果关系分析的实证方法中,最优的选择应当为随机实验,但是随机实验的时间成本和经济成本都比较高,而在随机实验不可得的情况下,需要考虑使用其它方法。
断点回归(Regression Discontinuity):是仅次于随机实验的,能够有效利用现实约束条件分析变量之间因果关系的实证方法。
在使用断点回归的情况下,存在一个变量,如果该变量大于一个临界值时,个体接受处置,而在该变量小于临界值时,个体不接受处置。一般而言,个体在接受处置的情况下,无法观测到其没有接受处置的情况,而在断点回归中,小于临界值的个体可以作为一个很好的可控组(Control Group)来反映个体没有接受处置时的情况,尤其是在变量连续的情况下,临界值附近样本的差别可以很好的反映处置和经济变量之间的因果联系。断点回归可以分为两类,第一类,临界值是确定的(Sharp),即在临界值一侧的所有的观测点都接受了处置,反之,在临界值另一侧的所有观测点都没有接受处置。此时,接受处置的概率从临界值一侧的0跳转到另一侧的1;第二类,临界点是模糊的(Fussy),即在临界值附近,接受处置的概率是单调变化的。Hahn et al.(2001)在一定的假设下,证明了无论是哪一类型的断点回归,都可以利用临界值附近样本的系统性变化来研究处置和其它经济变量之间的因果关系。
断点回归(Regression Discontinuity):是仅次于随机实验的,能够有效利用现实约束条件分析变量之间因果关系的实证方法。
在使用断点回归的情况下,存在一个变量,如果该变量大于一个临界值时,个体接受处置,而在该变量小于临界值时,个体不接受处置。一般而言,个体在接受处置的情况下,无法观测到其没有接受处置的情况,而在断点回归中,小于临界值的个体可以作为一个很好的可控组(Control Group)来反映个体没有接受处置时的情况,尤其是在变量连续的情况下,临界值附近样本的差别可以很好的反映处置和经济变量之间的因果联系。断点回归可以分为两类,第一类,临界值是确定的(Sharp),即在临界值一侧的所有的观测点都接受了处置,反之,在临界值另一侧的所有观测点都没有接受处置。此时,接受处置的概率从临界值一侧的0跳转到另一侧的1;第二类,临界点是模糊的(Fussy),即在临界值附近,接受处置的概率是单调变化的。Hahn et al.(2001)在一定的假设下,证明了无论是哪一类型的断点回归,都可以利用临界值附近样本的系统性变化来研究处置和其它经济变量之间的因果关系。
全部回答
- 1楼网友:七十二街
- 2021-03-26 01:15
在因果关系分析的实证方法中,最优的选择应当为随机实验,但是随机实验的时间成本和经济成本都比较高,而在随机实验不可得的情况下,需要考虑使用其它方法。断点回归(Regression Discontinuity)便是仅次于随机实验的,能够有效利用现实约束条件分析变量之间因果关系的实证方法。
在使用断点回归的情况下,存在一个变量,如果该变量大于一个临界值时,个体接受处置,而在该变量小于临界值时,个体不接受处置。一般而言,个体在接受处置的情况下,无法观测到其没有接受处置的情况,而在断点回归中,小于临界值的个体可以作为一个很好的可控组(Control Group)来反映个体没有接受处置时的情况,尤其是在变量连续的情况下,临界值附近样本的差别可以很好的反映处置和经济变量之间的因果联系。断点回归可以分为两类,第一类,临界值是确定的(Sharp),即在临界值一侧的所有的观测点都接受了处置,反之,在临界值另一侧的所有观测点都没有接受处置。此时,接受处置的概率从临界值一侧的0跳转到另一侧的1;第二类,临界点是模糊的(Fussy),即在临界值附近,接受处置的概率是单调变化的。Hahn et al.(2001)在一定的假设下,证明了无论是哪一类型的断点回归,都可以利用临界值附近样本的系统性变化来研究处置和其它经济变量之间的因果关系。
在使用断点回归的情况下,存在一个变量,如果该变量大于一个临界值时,个体接受处置,而在该变量小于临界值时,个体不接受处置。一般而言,个体在接受处置的情况下,无法观测到其没有接受处置的情况,而在断点回归中,小于临界值的个体可以作为一个很好的可控组(Control Group)来反映个体没有接受处置时的情况,尤其是在变量连续的情况下,临界值附近样本的差别可以很好的反映处置和经济变量之间的因果联系。断点回归可以分为两类,第一类,临界值是确定的(Sharp),即在临界值一侧的所有的观测点都接受了处置,反之,在临界值另一侧的所有观测点都没有接受处置。此时,接受处置的概率从临界值一侧的0跳转到另一侧的1;第二类,临界点是模糊的(Fussy),即在临界值附近,接受处置的概率是单调变化的。Hahn et al.(2001)在一定的假设下,证明了无论是哪一类型的断点回归,都可以利用临界值附近样本的系统性变化来研究处置和其它经济变量之间的因果关系。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯