设集合A={x|π/6≤x≤2π/3},B={x||f(x)-m|<2},f(x)=2sinx +1 ,若A∪B=B,求实数m的取值范围?
详细过程!谢谢!!!!
设集合A={x|π/6≤x≤2π/3},B={x||f(x)-m|<2},f(x)=2sinx +1 ,若A∪B=B,求实数m的取值范围?
详细过程!谢谢!!!!
A∪B=B
则A是B的子集
即π/6≤x≤2π/3时
|f(x)-m|<2恒成立
π/6≤x≤2π/3
所以sinπ/6<=sinx<=sinπ/2
1/2<=sinx<=1
1+2*1/2<=2sinx+1<=1+1*2
2<=f(x)<=3
|f(x)-m|<2
-2<f(x)-m<2
m-2<f(x)<m+2
要2<=f(x)<=3成立
则m-2<=2且 m+2>=3
m<=4,m>=1
所以1≤m≤4