永发信息网

已知f(x)是定义在R上的函数,f(1)=1且对任意x∈R都有:f(x+5)≥f(x)+5与f(x+1)≤f(x)+1成立,若g(x)=f(x)+1-x,则g(200

答案:2  悬赏:40  手机版
解决时间 2021-01-24 00:24
  • 提问者网友:贪了杯
  • 2021-01-23 02:34
已知f(x)是定义在R上的函数,f(1)=1且对任意x∈R都有:f(x+5)≥f(x)+5与f(x+1)≤f(x)+1成立,若g(x)=f(x)+1-x,则g(2002)=________.
最佳答案
  • 五星知识达人网友:你可爱的野爹
  • 2021-01-23 03:41
1解析分析:因为函数f(x)和g(x)都没给出解析式,所以求解g(2002)只能依靠f(1),由g(x)=f(x)+1-x可求出g(1),问题变成了求函数g(x)的周期问题,先把g(x)=f(x)+1-x变形得到g(x)+x-1=f(x),然后把x+5和x+1两次代入此式,借助于f(x+5)≥f(x)+5与f(x+1)≤f(x)+1变换得到函数g(x)的周期,则问题可求.解答:由g(x)=f(x)+1-x得g(x)+x-1=f(x)
∴g(x+5)+(x+5)-1=f(x+5)≥f(x)+5=g(x)+(x-1)+5
g(x+1)+(x+1)-1=f(x+1)≤f(x)+1=g(x)+(x-1)+1
∴g(x+5)≥g(x),g(x+1)≤g(x)
∴g(x)≤g(x+5)≤g(x+4)≤g(x+3)≤g(x+2)≤g(x+1)
∴g(x+1)=g(x)
∴T=1
∵g(1)=f(1)+1-1=1
∴g(2002)=1
全部回答
  • 1楼网友:白昼之月
  • 2021-01-23 03:57
这下我知道了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯