6/(x+1)(x-2)=(Ax+B)/(x+1)+C/(x-2),则A= B= C=
有过程谢谢
6/(x+1)(x-2)=(Ax+B)/(x+1)+C/(x-2),则A= B= C=
有过程谢谢
(Ax+B)/(x+1)+C/(x-2)
=[(Ax+B)(x-2)+C(x+1)]/[(x+1)(x-2)]
=[Ax^2+(B+C-2A)x+C-2B]/[(x+1)(x-2)]
又
6/[(x+1)(x-2)]=(Ax+B)/(x+1)+C/(x-2)
即:
6/[(x+1)(x-2)]=[Ax^2+(B+C-2A)x+C-2B]/[(x+1)(x-2)]
故:
6=Ax^2+(B+C-2A)x+C-2B
所以
A=0
B+C-2A=0
C-2B=6
解得:
A=0
B=-2
C=2
令x=0
得-3=B-C/(-2)
2B-C=-6
令x=1
得-3=(A-B)/2-C
A-B-2C=-3
令x=3
得3/2=(3A+B)/4+C
3A+B+4C=6
A=-10.5
B=-4.5
C=-3
(Ax+B)/(x+1)+C/(x-2)=((Ax+B)(x-2)+C(x+1))/(x+1)(x-2)=(Ax^2+(B-2A+C)x+C-2B)/(x+1)(x-2);
因为没有x^2项,所以A=0;没有x项,所以B-2A+C=0,C-2B=6,得B=-2,C=2
)=(Ax+B)/(x+1)+C/(x-2
={(AX+B)*(X-2)+C(X+1)}/(X+1)(X-2)
={X^2A+BX-2AX-2B+CX+C}/(X+1)(X-2)
={AX^2+X(B-2A+C)-2B+C}/(X+1)(X-2)
所以A=0
B-2A+C=0
C-2B=6
则B+C=0
B=-2
C=2
A=0