∫(上限π/2 下限0) [(sint)^4-(sint)^6] dt
答案:1 悬赏:20 手机版
解决时间 2021-03-23 22:39
- 提问者网友:却不属于对方
- 2021-03-23 08:10
∫(上限π/2 下限0) [(sint)^4-(sint)^6] dt
最佳答案
- 五星知识达人网友:春色三分
- 2021-03-23 08:45
当n为正整偶数时,即n=2m,m=1,2...
∫(0→π/2)(sinx)^ndx=[(2m-1)!!/(2m)!!](π/2)
当n为正整奇数时,即n=2m+1,m=0,1,2...
∫(0→π/2)(sinx)^ndx=[(2m)!!/(2m+1)!!]
∫(0→π/2)(sinx)^4dx
=(3/4)×(1/2)×(π/2)
=3π/16
∫(0→π/2)(sinx)^6dx
=(5/6)×(3/4)×(1/2)×(π/2)
=5π/32
3π/16-5π/32=π/32
∫(0→π/2)(sinx)^ndx=[(2m-1)!!/(2m)!!](π/2)
当n为正整奇数时,即n=2m+1,m=0,1,2...
∫(0→π/2)(sinx)^ndx=[(2m)!!/(2m+1)!!]
∫(0→π/2)(sinx)^4dx
=(3/4)×(1/2)×(π/2)
=3π/16
∫(0→π/2)(sinx)^6dx
=(5/6)×(3/4)×(1/2)×(π/2)
=5π/32
3π/16-5π/32=π/32
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯