谐振的谐振定义
答案:1 悬赏:50 手机版
解决时间 2021-11-11 14:20
- 提问者网友:自食苦果
- 2021-11-11 04:45
谐振的谐振定义
最佳答案
- 五星知识达人网友:从此江山别
- 2021-11-11 06:24
由电感L和电容C组成的,可以在一个或若干个频率上发生谐振现象的电路,统称为谐振电路。在电子和无线电工程中,经常要从许多电信号中选取出我们所需要的电信号,而同时把我们不需要的电信号加以抑制或滤除,为此就需要有一个选择电路,即谐振电路。另一方面,在电力工程中,有可能由于电路中出现谐振而产生某些危害,例如过电压或过电流。所以,对谐振电路的研究,无论是从利用方面,或是从限制其危害方面来看,都有重要意义。
§9.1串联谐振的电路
一. 谐振与谐振条件
二. 电路的固有谐振频率
三. 谐振阻抗,特征阻抗与品质因数 由电感L和电容C串联而组成的谐振电路称为串联谐振电路,如图9-1-1所示。其中R为电路的总电阻,即R=RL+RC,RL和RC分别为电感元件与电容元件的电阻;Us 为电压源电压,ω为电源角频率。该电路的输入阻抗为
其中 。故得Z的模和幅角分别为
由式(9-1-2)可见,当 时,即有φ=0,即XL与XC相同。此时我们就说电路发生了谐振。而电路达到谐振的条件即为
(9-1-3)
图9-1-1 串联谐振电路 由式(9-1-3)可得
ω0称为电路的固有谐振角频率,简称谐振角频率,因为它只由电路本身的参数L,C所决定。电路的谐振频率则为
谐振阻抗,特征阻抗与品质因数
电路在谐振时的输入阻抗称为谐振阻抗,用Z0表示。由于谐振时的电抗X=0,故由式(9-1-1)得谐振阻抗为
Z0=R
可见Z0为纯电阻,其值为最小。
谐振时的感抗XL0和容抗XC0称为电路的特征阻抗,用ρ表示。即
可见ρ只与电路参数L,C有关,而与ω无关,且有XL0=XC0。
品质因数用Q表示,定义为特征阻抗ρ与电路的总电阻R之比,即
Q=ρ/R=XL0/R=XC0/R
在电子工程中,Q值一般在10-500之间。由上式可得
ρ=XL0=XC0=QR
故可得谐振阻抗的又一表示式为
Z0=R=ρ/Q
在电路分析中一般多采用电路元件的品质因数。电感元件与电容元件的品质因数分别定义为
即电路的品质因数Q,实际上可认为就是电感元件的品质因数QL。以后若提到品质因数Q,今指QL。 谐振电路在谐振时的特性有
1. 谐振阻抗Z0为纯电阻,其值为最小,即Z0=R。
2. 电流与电源电压同相位,即φ=ψu-ψi=0。
3. 电流的模达到最大值,即I=I0=US/R0 ,I0称为谐振电流。
4. L和C两端均可能出现高电压,即
UL0=I0XL0=(US/R)XL0=QUS
UC0=I0xC0=(US/R)XC0=QUS
可见当Q>>1时,即有UL0=UCO>>US,故串联谐振又称为电压谐振。这种出现高电压的现象,在无线电和电子工程中极为有用,但在电力工程中却表现为有害,应予以防止。
由上两式,我们又可得到Q的另一表示式和物理意义,即
Q=UL0/US=UC0/US
5. 谐振时电路的向量图如图9-1-2所示。由图可见,L和C两端的电压大小相等,相位相反,互相抵消了。故有 。 电路的各物理量随电源频率ω而变化的函数关系称为电路的频率特性。研究电路频率特性的目的在于进一步研究谐振电路的选择性与通频带问题。
1.阻抗的模频特性与相频特性 电路的感抗XL,容抗XC,电抗X,阻抗的模 分别为
它们的频率特性如图9-1-3(a)所示,统称为阻抗的模频特性。由图可见,当ω=0时, ,当0<ω<ω0时,X<0,电路呈电容性;当ω=ω0时,X=0,电路呈纯电阻性, ;当ω0<ω<∞时,X>0,电路呈感性;当ω→∞时, 。
阻抗的相频特性就是阻抗角φ随ω变化关系,即
当ω=0时,φ=-π/2;当ω=ω0时,φ=0;当ω=∞时,φ=π/2。其曲线如图9-1-3(b)所示,称为相位频率特性。
2.电流频率特性
当ω=0时,I=0;当ω=ω0时,I=I0=US/R;当ω=∞时,I=0。其曲线如图9-1-3(c)所示,称为电流频率特性
3 .电压频率特性 电容和电感电压的有效值分别为
UC=I/ωC
UL=IωL
由于在电子工程中总是Q?1,ω0很高,且ω又是在ω0附近变化,故有1/ωC≈1/ω0C,ωL≈ω0L。故上两式可写为
UC=UL≈I/ω0C=Iω0L
即UC和UL均近似与电流I成正比。UC,UL的频率特性与电流I的频率特性相似,如图9-1-3(d)所示。图中UL0=UCO=I0X=I0xC0。 4.相对频率特性
由式(9-1-5)看出,电流I不仅与R,L,C有关,且与US有关,这就使我们难以确切的比较电路参数对电路频率特性曲线的影响。为此我们来研究对相对电流频率特性。
上式描述的相对电流值I/I0与ω/ω0(或f/f0)的函数关系,即为相对电流频率特性。可见上式右端与US无关,其频率特性如图9-1-4所示。
图9-1-4 相对频率特性
5.Q值与频率特性的关系
根据式(9-1-6)可画出不同Q值时的相对电流频率特性曲线,如图9-1-5所示。从图中看出,Q值高,曲线就尖锐;Q值低,曲线就平坦。即曲线的锐度;与Q值成正比。
图9-1-5 Q值与频率特性的关系
六.选择性与通频带
1.选择性
谐振电路的选择性就是选择有用的电信号的能力。如图9-1-6所示,当R,L,C串联电路中接入许多不同频率的电压信号时,今如调节电路的固有谐振频率 ω0(在此是调节电容C),就能使我们所需要的频率信号(例如ω2)与电路达到谐振,即使ω0=ω2,从而电路中的 电流达到最大值(谐振电流),当电路的Q值很高时,从C两端(或L两端)输出的电压UC(或UL)也就最大;而我们不需要的电信号(例如ω1和ω3的电压)在电路中产生的电流很小,其输出电压当然也小。这就达到了选择有用电信号ω2的目的。显然,电路的Q值越高,频率特性就越尖锐,因而选择性也就越好。
图9-1-6 串联谐振电路的选择性
2.通频带
(1)定义:当电源的ω(或f)变化时,使电流 (或使 )的频率范围称为电路的通频带,如图9-1-7所示。通频带用Δω或Δf表示,即
ω=ω2-ω1
或 f=f2-f1
(2) 计算公式
可见,Δω(或Δf)与Q值成反比,亦即与选择性相矛盾。
定义相对通频带为
Δω/ω0=Δf/f0=1/Q
图9-1-7 电路通频带的定义
(3)半功率点频率
我们称f1(或ω1)为下边界频率,f2(或ω2)为上边界频率。由于谐振时电路中消耗的功率为P0=I02R,而在f1和f2时,电路中消耗的功率 。可见在上,下边界频率f1和f2处,电路中消耗的功率是等于P0的一半,故又称上,下边界频率为半功率点频率。
在正弦激励下对于同时含有L和C的一段无源电路,如果它的入端电压和入端电流同相位,则称这样一种特定的电路工作状态为谐振。 通常把电压超前电流的正弦交流电路称为感性电路,这时电路吸收的无功功率反映了外电源和电路之间磁场能量交换的速率。反之,如果电压滞后电流则无功功率反映的是外电源和电路之间电场能量交换的速率,电路呈容性。在谐振状态下,电压与电流同相位,无功功率为零,表明电路和外电源之间没有电场能或磁场能的交换。当然,这并不是说电路中不含电场能或磁场能,只是表明,在揩振时,电路L中的磁场能和C中的电场能恰好自成系统,在电路内部进行交换。
§9.1串联谐振的电路
一. 谐振与谐振条件
二. 电路的固有谐振频率
三. 谐振阻抗,特征阻抗与品质因数 由电感L和电容C串联而组成的谐振电路称为串联谐振电路,如图9-1-1所示。其中R为电路的总电阻,即R=RL+RC,RL和RC分别为电感元件与电容元件的电阻;Us 为电压源电压,ω为电源角频率。该电路的输入阻抗为
其中 。故得Z的模和幅角分别为
由式(9-1-2)可见,当 时,即有φ=0,即XL与XC相同。此时我们就说电路发生了谐振。而电路达到谐振的条件即为
(9-1-3)
图9-1-1 串联谐振电路 由式(9-1-3)可得
ω0称为电路的固有谐振角频率,简称谐振角频率,因为它只由电路本身的参数L,C所决定。电路的谐振频率则为
谐振阻抗,特征阻抗与品质因数
电路在谐振时的输入阻抗称为谐振阻抗,用Z0表示。由于谐振时的电抗X=0,故由式(9-1-1)得谐振阻抗为
Z0=R
可见Z0为纯电阻,其值为最小。
谐振时的感抗XL0和容抗XC0称为电路的特征阻抗,用ρ表示。即
可见ρ只与电路参数L,C有关,而与ω无关,且有XL0=XC0。
品质因数用Q表示,定义为特征阻抗ρ与电路的总电阻R之比,即
Q=ρ/R=XL0/R=XC0/R
在电子工程中,Q值一般在10-500之间。由上式可得
ρ=XL0=XC0=QR
故可得谐振阻抗的又一表示式为
Z0=R=ρ/Q
在电路分析中一般多采用电路元件的品质因数。电感元件与电容元件的品质因数分别定义为
即电路的品质因数Q,实际上可认为就是电感元件的品质因数QL。以后若提到品质因数Q,今指QL。 谐振电路在谐振时的特性有
1. 谐振阻抗Z0为纯电阻,其值为最小,即Z0=R。
2. 电流与电源电压同相位,即φ=ψu-ψi=0。
3. 电流的模达到最大值,即I=I0=US/R0 ,I0称为谐振电流。
4. L和C两端均可能出现高电压,即
UL0=I0XL0=(US/R)XL0=QUS
UC0=I0xC0=(US/R)XC0=QUS
可见当Q>>1时,即有UL0=UCO>>US,故串联谐振又称为电压谐振。这种出现高电压的现象,在无线电和电子工程中极为有用,但在电力工程中却表现为有害,应予以防止。
由上两式,我们又可得到Q的另一表示式和物理意义,即
Q=UL0/US=UC0/US
5. 谐振时电路的向量图如图9-1-2所示。由图可见,L和C两端的电压大小相等,相位相反,互相抵消了。故有 。 电路的各物理量随电源频率ω而变化的函数关系称为电路的频率特性。研究电路频率特性的目的在于进一步研究谐振电路的选择性与通频带问题。
1.阻抗的模频特性与相频特性 电路的感抗XL,容抗XC,电抗X,阻抗的模 分别为
它们的频率特性如图9-1-3(a)所示,统称为阻抗的模频特性。由图可见,当ω=0时, ,当0<ω<ω0时,X<0,电路呈电容性;当ω=ω0时,X=0,电路呈纯电阻性, ;当ω0<ω<∞时,X>0,电路呈感性;当ω→∞时, 。
阻抗的相频特性就是阻抗角φ随ω变化关系,即
当ω=0时,φ=-π/2;当ω=ω0时,φ=0;当ω=∞时,φ=π/2。其曲线如图9-1-3(b)所示,称为相位频率特性。
2.电流频率特性
当ω=0时,I=0;当ω=ω0时,I=I0=US/R;当ω=∞时,I=0。其曲线如图9-1-3(c)所示,称为电流频率特性
3 .电压频率特性 电容和电感电压的有效值分别为
UC=I/ωC
UL=IωL
由于在电子工程中总是Q?1,ω0很高,且ω又是在ω0附近变化,故有1/ωC≈1/ω0C,ωL≈ω0L。故上两式可写为
UC=UL≈I/ω0C=Iω0L
即UC和UL均近似与电流I成正比。UC,UL的频率特性与电流I的频率特性相似,如图9-1-3(d)所示。图中UL0=UCO=I0X=I0xC0。 4.相对频率特性
由式(9-1-5)看出,电流I不仅与R,L,C有关,且与US有关,这就使我们难以确切的比较电路参数对电路频率特性曲线的影响。为此我们来研究对相对电流频率特性。
上式描述的相对电流值I/I0与ω/ω0(或f/f0)的函数关系,即为相对电流频率特性。可见上式右端与US无关,其频率特性如图9-1-4所示。
图9-1-4 相对频率特性
5.Q值与频率特性的关系
根据式(9-1-6)可画出不同Q值时的相对电流频率特性曲线,如图9-1-5所示。从图中看出,Q值高,曲线就尖锐;Q值低,曲线就平坦。即曲线的锐度;与Q值成正比。
图9-1-5 Q值与频率特性的关系
六.选择性与通频带
1.选择性
谐振电路的选择性就是选择有用的电信号的能力。如图9-1-6所示,当R,L,C串联电路中接入许多不同频率的电压信号时,今如调节电路的固有谐振频率 ω0(在此是调节电容C),就能使我们所需要的频率信号(例如ω2)与电路达到谐振,即使ω0=ω2,从而电路中的 电流达到最大值(谐振电流),当电路的Q值很高时,从C两端(或L两端)输出的电压UC(或UL)也就最大;而我们不需要的电信号(例如ω1和ω3的电压)在电路中产生的电流很小,其输出电压当然也小。这就达到了选择有用电信号ω2的目的。显然,电路的Q值越高,频率特性就越尖锐,因而选择性也就越好。
图9-1-6 串联谐振电路的选择性
2.通频带
(1)定义:当电源的ω(或f)变化时,使电流 (或使 )的频率范围称为电路的通频带,如图9-1-7所示。通频带用Δω或Δf表示,即
ω=ω2-ω1
或 f=f2-f1
(2) 计算公式
可见,Δω(或Δf)与Q值成反比,亦即与选择性相矛盾。
定义相对通频带为
Δω/ω0=Δf/f0=1/Q
图9-1-7 电路通频带的定义
(3)半功率点频率
我们称f1(或ω1)为下边界频率,f2(或ω2)为上边界频率。由于谐振时电路中消耗的功率为P0=I02R,而在f1和f2时,电路中消耗的功率 。可见在上,下边界频率f1和f2处,电路中消耗的功率是等于P0的一半,故又称上,下边界频率为半功率点频率。
在正弦激励下对于同时含有L和C的一段无源电路,如果它的入端电压和入端电流同相位,则称这样一种特定的电路工作状态为谐振。 通常把电压超前电流的正弦交流电路称为感性电路,这时电路吸收的无功功率反映了外电源和电路之间磁场能量交换的速率。反之,如果电压滞后电流则无功功率反映的是外电源和电路之间电场能量交换的速率,电路呈容性。在谐振状态下,电压与电流同相位,无功功率为零,表明电路和外电源之间没有电场能或磁场能的交换。当然,这并不是说电路中不含电场能或磁场能,只是表明,在揩振时,电路L中的磁场能和C中的电场能恰好自成系统,在电路内部进行交换。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯