三角函数的互换
答案:2 悬赏:80 手机版
解决时间 2021-04-09 03:46
- 提问者网友:那叫心脏的地方装的都是你
- 2021-04-08 19:45
三角函数的互换
最佳答案
- 五星知识达人网友:傲气稳了全场
- 2021-04-08 21:15
同角三角函数的基本关系
倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
sin² α+cos² α=1 tan α *cot α=1
锐角三角函数公式
正弦: sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边
二倍角公式
正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切 tan2A=(2tanA)/(1-tan^2(A))
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
两角和公式
cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ
积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2
诱导公式
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²] tanα=2tan(α/2)/[1-(tan(α/2))²]
其它公式
(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)
倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
sin² α+cos² α=1 tan α *cot α=1
锐角三角函数公式
正弦: sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边
二倍角公式
正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切 tan2A=(2tanA)/(1-tan^2(A))
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
两角和公式
cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ
积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2
诱导公式
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²] tanα=2tan(α/2)/[1-(tan(α/2))²]
其它公式
(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)
全部回答
- 1楼网友:酒者煙囻
- 2021-04-08 22:39
辅助角公式
asinx+bsinx=(a^2+b^2)^0.5sin(x+a) 且满足tana=a/b
诱导公式
sin(x+2π)=sinx
cos(x+2π)=cosx
tan(x+π)=tanx
sin(x+π)=-sinx
cos(x+π)=-cosx
sin(π-x)=sinx
cos(π-x)=-cosx
tan(π-x)=-tanx
sin(π*1/2-x)=cosx
cos(π*1/2-x)=sinx
tan(π*1/2-x)=cotx(余切即为1/tanx)
sin(π*1/2+x)=cosx
cos(π*1/2+x)=-sinx
tan(π*1/2+x)=-cotx
和差化积
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2] sina-sinb=2cos[(a+b)/2]sin[(a-b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
积化和差
sinacosb=1/2[sin(a+b)+sin(a-b)] cosasinb=1/2[sin(a+b)-sin(a-b)]
cosacosb=1/2[cos(a+b)+cos(a-b)] sinasinb=-1/2[cos(a+b)-cos(a-b)]
二倍角公式
sin2a=2sinacosa cos2a=cosa^2-sina^2 tan2a=2tana/(1-tana^2)
三倍角公式
sina3a=3sina-4sina^3=asin(60-a)sinasin(60+a)
cos3a=4cosa^3-3cosa=4cos(60-a)cosacos(60+a)
tan3a=tanatan(60-a)tan(60+a)=(3tana-tana^3)/(1-3tana^2)
万能公式
令t=tan(a/2)
sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)
其他结论
sina^2-sinb^2=cosb^2-cosa^2=sin(a+b)sin(a-b)
cosa^2-sinb^2=cosb^2-sina^2=cos(a+b)cos(a-b)
望采纳
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯