永发信息网

设正实数x,y,z满足x^2-3xy+4y^2-z=0,则z/xy取得最大值时,x+2y+-z的最大值为 (A)0 (B) 9/8 (C)2 (D) 9/4

答案:1  悬赏:20  手机版
解决时间 2021-11-29 16:55
  • 提问者网友:你给我的爱
  • 2021-11-29 06:56
设正实数x,y,z满足x^2-3xy+4y^2-z=0,则z/xy取得最大值时,x+2y+-z的最大值为 (A)0 (B) 9/8 (C)2 (D) 9/4
最佳答案
  • 五星知识达人网友:空山清雨
  • 2021-11-29 07:26
题目有点问题, z/(xy)没有最大值.
由条件z = x²+4y²-3xy, 故z/(xy) = x/y+4y/x-3.
取x = 1, 当y趋于0时, 可知右端趋于正无穷.

正确的说法可能是z/(xy)取最小值或者等价的(xy)/x取最大值.
根据均值不等式, z/(xy) = x/y+4y/x-3 ≥ 2·√((x/y)(4y/x))-3 = 1.
等号成立当且仅当x/y = 4y/x, 即x = 2y时z/(xy)取得最小值1.
此时z = x²+4y²-3xy = 2y², x+2y-z = 4y-2y² = 2-2(y-1)².
在y = 1时取得最大值2.
故选C.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯