永发信息网

怎样学习二次根式?

答案:2  悬赏:0  手机版
解决时间 2021-08-24 12:35
  • 提问者网友:做自己de王妃
  • 2021-08-23 20:13
怎样学习二次根式?另外什么叫共轭二次根式?怎样解答共轭二次根式?要具体例题步骤、谢谢。
最佳答案
  • 五星知识达人网友:轻熟杀无赦
  • 2021-08-23 20:35

二次根式新题型



近几年的中考数学试题围绕二次根式出现了许多重素质、考能力的新颖题型,归纳起来,主要有以下几种。


一. 开放求值题


例1. 请先化简下列式子,再选取两个能使原式有意义,而你又喜爱的数代入化简后的式子中求值。



解:原式



当 时,原式 ;


当 时,原式 。


评注:将一道常规的条件求值题,稍加改编,成为开放求值题,其意境截然不同,可贵之处不但在于从更高层次上考查了学生缜密思考(改编的同时,暗设陷阱 )、灵活运用知识的能力,而且体现了人文关爱,利于激发兴趣,缓解考试压力。


二. 计算器操作探索题


例2. 用计算器探索:已知按一定规律排列的一组数: , 。如果从中选出若干个数,使它们的和大于3,那么至少要选___________个数。


解析:由于各数据的分母依次增大,故这组数据依次减小,根据题意可选前面数值较大的数据求和。由计算器可求得:



至少要选5个数,故填5。


例3. 借助于计算器可以求得 , , 仔细观察上面几道题的计算结果,试猜想 __________。


解析: ,



观察以上各式,易发现等式左端被开方数各加数的幂底数位数与等式右端的数的位数相同,于是可猜想:



评注:养成正确使用计算器的习惯,能熟练地运用计算器去完成复杂的运算或探究性问题,是国家数学课程标准和数学大纲的要求。从上述两例中可看到,由于使用了计算器,避免了繁冗、重复的运算过程,大大提高了解题效率,计算器进课堂、进考场是时代的要求,学习的需要,应引起高度重视。


三. 读图计算题


例4. 在第六册课本的阅读材料中,介绍了一个第七届国际数学教育大会的会徽,它的主体图案是由一连串如图所示的直角三角形演化而成的。设其中的第一个直角三角形 是等腰直角三角形,且 ,请你先把图中其他8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积。




解析:观察图形可知,待求线段既是前一个直角三角形的斜边,又是后一个直角三角形的直角边,因而利用勾股定理可求出各线段的长依次为 、 ,它们的积为 。


评注:解这类题的关键是结合题设读懂图,从图中获取信息,借助数形结合,就能迅速、正确地找到解题途径。


四. 阅读判断题


例5. 化简 时,甲的解法是:



乙的解法是:



以下判断正确的是(    )


A. 甲的解法正确,乙的解法不正确


B. 甲的解法不正确,乙的解法正确


C. 甲、乙的解法都正确


D. 甲、乙的解法都不正确


解析:正确答案应为C。甲采用分母有理化的方法,而乙采用分解约分法,虽然两人的思路不同,解法各异,但最后殊途同归。


例6. 对于题目“化简并求值: ,其中 ”,甲、乙两人的解答不同,


甲的解答是:



乙的解答是:



谁的解答是错误的?为什么?


解析:解答此题的关键是对于式子 脱去根号后,得到 ,还是 。这就必须要明确 是正还是负。



故乙的解答是错误的。


评注:这两道题格调清新,考查面宽广,从分母有理化、二次根式的性质、二次根式的化简等基础知识、基本技能到思维的灵活性、深刻性、批判性等方面都进行了考查。解答时要慎重思考,仔细甄别。这类题有利于学生养成对待问题认真负责、一丝不苟的态度。


六. 归纳、猜想题


例7. 观察下列各式:



你能得出怎样的结论?并给出证明。


解析:仔细观察,不难发现每个算式左边根号内的整数、分数的分子与右边根号外的整数、根号内的分数的分子都相同,而分母比分子的平方少1,故得结论为(    )



证明:




评注:归纳、猜想题,常常是从简单情形入手,通过对若干特例的观察、分析,从中类比、归纳,发现其中的规律,进而猜想出具有一般规律的结论,并对结论的正确性给予验证或证明。


七. 阅读理解题


例8. 观察下列分母有理化的运算:



利用上面的规律计算:


__________。


解析:要计算的式子有两个因式,第一个因式可根据题中给出的规律求得



例9. 阅读下面的问题及解答:


问题:化简



解:设



原式



从上面的解答可以看出,一个很复杂的根式,化简的结果却是个简单的有理数,做完这道习题后,现在请你当一回老师,编四个类似的二次根式的化简题,要求满足以下两个条件:


(1)题目是由 这三个无理数(或是其中两个)经过各种运算组成的(每题要包含加、减、乘、除、乘方几种运算中的一种或几种运算,如 等,在你编出的四道题中,不能漏掉了五种运算中的某一种运算)。


(2)化简的结果是一个有理数。


解析:阅读材料介绍了解决本题的一个方法——构造共轭因式。因此,利用共轭因式的积、商、平方或结合其他手段来尝试编拟符合条件的二次根式化简题,如:


(1) ;


(2) ;


(3) ;


(4) ;


(5) ;


(6)



(7)



评注:阅读理解题取材广泛,是考查学生基础知识及其综合素质的热门题型。它一般由两部分组成:一是阅读材料,二是考查内容。根据阅读内容、考查目标的不同,又可分为许多题型。例8、例9都属于知识性阅读题,即通过阅读给出的材料,理解并掌握方法,进而应用方法解答题中设置的问题。这类题对学生的阅读理解能力、自学能力、创新应用能力等都有较高的要求。

全部回答
  • 1楼网友:长青诗
  • 2021-08-23 21:11

二次根式训练基本技能 培养运算能力 二次根式这一章是初中代数第二册的最后一章,前一章“数的开方”引出了实数与无理数的概念,本章则借助二次根式,重点阐述有关实数与无理数运算的知识。紧接本章之后,初三代数第一章,就是以本章为基础的“一元二次方程”。 学习"二次根式",首先,要把握好本章的学习重点,处理好二次根式的概念、性质、运算的关系;其次,要科学地安排习题的内容,提高习题的效益,以更好地培养运算能力。 一、处理好概念、性质、运算的关系 本章的基本内容是二次根式的概念、性质和运算,其中重点是二次根式的化简与运算,二次根式的概念是化简与运算的基础,二次根式的性质是化简与运算的依据。 关于二次根式的内容,以往的教材基本上是先讲概念,再讲性质,最后讲运算,其中,运算部分是按加减——乘法——除法的顺序讲述的。 例如,二次根式有以下性质: ①√a^2=|a|=a(a>0).-a(a<0) ②√(a/b)=√a/√b,(a≥0,b>0) ③√ab=√a√b,(a≥0,b≥0) 教科书中不是单独讲解这三个性质,而是先结合二次根式的乘法介绍性质②,又结合二次根式的除法介绍性质③,最后结合二次根式的混合运算介绍性质①。 前面提到的以往教材的编排,是侧重学习材料的逻辑(论理)顺序的,理论性比较强;现行教科书则是采用的比较重视学生学习的心理顺序的编排,便于学生对于具体材料的学习与掌握。考虑到现行教科书的编排在体现知识系统性方面的不足,教材在章末的小结与复习中,对全章内容进行了逻辑整理,以使学生系统地了解二次根式的知识。 明确了二次根式的概念、性质和运算三者在本章中的地位与它们之间的关系,就可以较好地把握它们在学习要求上的区别了。 二次根式的运算是本章的重点,相应的教学要求是能熟练地进行二次根式的加、减、乘、除运算,能熟练地将分母中含有一个或两个二次根式的式子进行分母有理化。二次根式的性质是运算的依据,相应的教学要求是掌握二次根式的有关性质及运算法则。二次根式的概念是运算的基础,相应的教学要求是了解二次根式及有关概念。 在实际学习中,如何对教学成果进行评估呢?关键看学生运算的熟练程度,其中,又以二次根式的混合运算为重。至于对二次根式性质的掌握,对二次根式概念的了解,都可以通过对运算的掌握加以判断和检测。 二、提高技能训练的效益 首先,要明确训练的目的。 对于二次根式这一章,训练的目的主要是培养进行二次根式运算的基本技能,了解与运算有关的基础知识,从而发展能力。 其次,对训练内容的选取要科学,深度、广度要适当。 从本章的训练目的出发,在训练内容的选择上,一是以常用运算为主,不必专门在概念、性质上下大功夫;二是以基本技能为主,而不追求繁难式子化简、运算的特殊技巧。 第三,要改进训练方法。 在实施二次根式运算的训练时,要从有理数、有理式运算与二次根式运算的区别?联系上入手,抓住问题的症结,培养独立学习、思考和解决问题的能力。 总之,弄清训练目的,选准训练内容,搞活训练方法,才能提高学习质量与效益。 除了上面谈到的问题,在进行二次根式的学习时,还应该注意与几何课的联系。 在前一章“数的开方”中,是利用几何里学习的“勾股定理”引入实数概念的,而在本章,从开始的章头图及序言,到二次根式的运算,都结合了“勾股定理”的应用。借助于几何上的应用,可以帮助我们认识学习二次根式的目的,增加学习兴趣,同时,也复习、巩固了几何的相关知识。 二次根式问题是初中基本技能训练的重中之中,也是我们进行繁琐运算与变换能力培养的起点,学好它,无论对于初中阶段的学习还是对以后的学习都是有着重要意义的,在明确目的的情况下,多想多练,不仅仅是学好"二次根式",而且也是学好整个数学知识的关键

我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯