永发信息网

已知(2x+3)4=a0x4+a1x3+a2x2+a3x+a4,求:(1)a0+a1+a2+a3+a4;(2)a0-a1+a2-a3+a4(3)a0+a2+a4.

答案:2  悬赏:0  手机版
解决时间 2021-03-23 22:33
  • 提问者网友:星軌
  • 2021-03-23 18:21
已知(2x+3)4=a0x4+a1x3+a2x2+a3x+a4,
求:(1)a0+a1+a2+a3+a4;
(2)a0-a1+a2-a3+a4
(3)a0+a2+a4.
最佳答案
  • 五星知识达人网友:由着我着迷
  • 2020-10-22 01:21
解:(1)∵(2x+3)4=a0x4+a1x3+a2x2+a3x+a4,
∴令x=1,得625=a0+a1+a2+a3+a4,
即得a0+a1+a2+a3+a4=625;

(2)∵(2x+3)4=a0x4+a1x3+a2x2+a3x+a4,
∴令x=-1,得1=a0-a1+a2-a3+a4,
即得a0-a1+a2-a3+a4=1;

(3)∵a0+a1+a2+a3+a4+a0-a1+a2-a3+a4=2(a0+a2+a4),
∴2(a0+a2+a4)=625+1=626,
两边同时除以2得:a0+a2+a4=313.解析分析:由于本题x未知,故可随意赋值,以便求出所求的代数式的解,(1)可直接令x=1,便得代数式的值,(2)同理可令x=-1,便得代数式的值.(3)将(1)(2)所得代数式相加即可得出a0+a2+a4的值.点评:本题主要考查代数式求值问题,可利用已知中恒等式,进行赋值,灵活应用,便可得出所求结果,要认真掌握.
全部回答
  • 1楼网友:不想翻身的咸鱼
  • 2019-11-22 05:18
正好我需要
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯