永发信息网

已知抛物线y=ax²+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0.以下

答案:2  悬赏:40  手机版
解决时间 2021-03-05 11:19
  • 提问者网友:你给我的爱
  • 2021-03-04 19:29
已知抛物线y=ax²+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0.以下
最佳答案
  • 五星知识达人网友:第四晚心情
  • 2021-03-04 20:28
a - b + c = 0.(1)4a + 2b + c > 0.(2)a (2) - (1) 3a + 3b > 0 .a + b > 0 ,b > 0a + c = b > 0- a + b + c = (a - b + c) - 2a + 2b = 2( - a + b) > 0(b² - 2ac) - 5a² = b² - 2a(b - a) - 5a² = (a + b)(b - 3a) > 0以上四式都成立!======以下答案可供参考======供参考答案1:(1).把(-1,0)代入抛物线的a-b+c=0推出c=b-a再代入到4a+2b+c>0中3a+3b>0得到❶a+b>0;成立。(2).把(-1,0)代入抛物线的a-b+c=0推出b=a+c再代入到4a+2b+c>0中6a+3c>0又由于a<0得到;❷a+c>0;成立。(3).由❶a+b>0;❷a+c>0;得2a+b+c>0,所以;❸﹣a+b+c>0;成立。(4).抛物线与x轴有交点,则b²-4ac>0或b²-4ac=0,当b²-4ac>0时,c>0,b²-2ac>2ac由于2ac供参考答案2:因y=ax²+bx+c(a<0)经过点(﹣1,0),所以a-b+c=0,又4a+2b+c>0,3a+3b>0,即a+b>0.故❶a+b>0正确。由❶正确得b>0且|b|>|a|,所以对称轴在y轴右侧,于是f(0)=c>0,故❸﹣a+b+c>0正确;
全部回答
  • 1楼网友:往事隔山水
  • 2021-03-04 21:25
感谢回答
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯