在下列命题中:①若向量a、b共线,则向量a、b所在的直线平行;
②若向量a、b所在的直线是异面直线,则向量a、b一定不共面;
③若a、b、c三向量两两共面,则a、b、c三向量一定也共面;
④已知三向量a、b、c,则空间任意一个向量p总可以唯一表示为p=xa+yb+zc.其中正确命题的个数为A.0B.1C.2D.3
在下列命题中:①若向量a、b共线,则向量a、b所在的直线平行;②若向量a、b所在的直线是异面直线,则向量a、b一定不共面;③若a、b、c三向量两两共面,则a、b、c三
答案:2 悬赏:30 手机版
解决时间 2021-11-30 15:19
- 提问者网友:温柔港
- 2021-11-29 22:55
最佳答案
- 五星知识达人网友:零点过十分
- 2020-05-30 07:03
A解析考点:命题的真假判断与应用.
分析:逐个判断:向量是可自由平移的,命题①、②均不正确;举反例,可证③不正确,由空间向量基本定理,可知,命题④不正确.
解:由于向量是可自由平移的,所以向量a,b共线,不一定向量a,b所在的直线平行,故命题①不正确;
同样因为向量是可自由平移的,向量a,b所在的直线为异面直线,则向量a,b也可能共面,故命题②不正确;
三个向量a,b,c两两共面,如直角坐标系的三个基向量,它们不共面,故命题③不正确;
由空间向量基本定理,可知,只有当三个向量a,b,c,不共面的时候,由它们做基底,才有后面的结论,故命题④不正确.
即4个命题都不正确.
故选A.
分析:逐个判断:向量是可自由平移的,命题①、②均不正确;举反例,可证③不正确,由空间向量基本定理,可知,命题④不正确.
解:由于向量是可自由平移的,所以向量a,b共线,不一定向量a,b所在的直线平行,故命题①不正确;
同样因为向量是可自由平移的,向量a,b所在的直线为异面直线,则向量a,b也可能共面,故命题②不正确;
三个向量a,b,c两两共面,如直角坐标系的三个基向量,它们不共面,故命题③不正确;
由空间向量基本定理,可知,只有当三个向量a,b,c,不共面的时候,由它们做基底,才有后面的结论,故命题④不正确.
即4个命题都不正确.
故选A.
全部回答
- 1楼网友:长青诗
- 2021-06-07 14:24
我好好复习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯