(1)A.B两个物体间用最大张力为100N的轻绳相连,mA=4kg,mB=8kg,在拉力F的作用下向上加速运动,为使轻绳不被拉断,F的最大值为多少?
(2)跨过定滑轮的绳的一端挂一吊板,另一吊板上的人拉住。已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量.滑轮的摩擦均可不计,取重力加速度g=10m/s^2。当人以440N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别是多少?
大家帮帮忙呗,急啊,能做几道就做几道吧,谢谢啦!
(1)A.B两个物体间用最大张力为100N的轻绳相连,mA=4kg,mB=8kg,在拉力F的作用下向上加速运动,为使轻绳不被拉断,F的最大值为多少?
(2)跨过定滑轮的绳的一端挂一吊板,另一吊板上的人拉住。已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量.滑轮的摩擦均可不计,取重力加速度g=10m/s^2。当人以440N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别是多少?
大家帮帮忙呗,急啊,能做几道就做几道吧,谢谢啦!
1设最大拉力为F,
先以A,B整体为研究对象 由牛二有 F-mA*g-mB*g=(mA+mB)*a;
然后一下面的物体为研究对象,以B为例(你没说清楚)
T-mB*g=mB*a; (T=100 N)数据我就不代了。
2 设人的拉力为T=440 N;对人和吊板整体 2*T -(m人+m板)*g=(m人+m板)*a (a及所求加速度)
然后对于人 F+T-m人*g=m人*a
你解一下!
1.解:要使轻绳不被拉断,则绳的最大拉力FT=100N,先以B为研究对象,受力分析如图(1)所示,据牛顿第二定律有FT-mBg = mBa ① 再以A,B整体为对象,受力分析如图(2)所示, 同理列方程 F-(mA+mB)g =(mA+mB)a ② 由①②解得 F=(mA+mB)(g+a)=12×12.5=150(N)
2.人和吊板共同运动,具有共同加速度,取向上为正方向~ 单独分析~ 对人:受自身的重力,绳子向上的拉力和吊板对人的支持力~ 所以由牛二定律得:F绳+F板对人-G人=M人a 对吊板:受自身的重力,绳子向上的拉力和人对吊板的压力~ 所以由牛二定律得:F绳-F人对板-G板=M板a 其中,F人对板=F板对人(作用力和反作用力) 两式相加得a=1m/s^2(算出的加速度为正,说明加速度方向与正方向相同,向上) 将a的值随便带入上面的一个式中算出人对吊板的压力为330N
希望采纳……学习进步……谢谢……