永发信息网

设a,b,c为不等于1的正数,且a^x=b^y=c^z,xy+yz+xz=0,求abc

答案:2  悬赏:70  手机版
解决时间 2021-01-27 03:09
  • 提问者网友:疯子也有疯子的情调
  • 2021-01-26 22:47
设a,b,c为不等于1的正数,且a^x=b^y=c^z,xy+yz+xz=0,求abc
最佳答案
  • 五星知识达人网友:西风乍起
  • 2021-01-26 23:53
设a^x=b^y=c^z=k则loga(k)=x,logb(k)=y,logc(k)=z又因为xy+yz+xz=0则:loga(k)*logb(k)+logb(k)*logc(k)+loga(k)*logc(k)=0(1)把(1)式变形1/logk(a)*1/logk(b)+1/logk(b)*1/logk(c)+1/logk(a)*1/logk(c)=0即1/logk(a+b)+1/logk(b+c)+1/logk(a+c)=0(2)要使(2)式成立即:a+b=1b+c=1a+c=1a=1/2,b=1/2,c=1/2abc=1/8======以下答案可供参考======供参考答案1:x=y=z=0的时候,abc有无数解诶签名保存
全部回答
  • 1楼网友:独行浪子会拥风
  • 2021-01-27 00:21
我好好复习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯