永发信息网

如图,已知梯形ABCD,AD∥BC,AF交CD于E,交BC的延长线于F.(1)若∠B+∠DCF=180°,求证:四边形ABCD是等腰梯形;(2)若E是线段CD的中点,

答案:2  悬赏:40  手机版
解决时间 2021-12-31 17:08
  • 提问者网友:末路
  • 2021-12-30 22:40
如图,已知梯形ABCD,AD∥BC,AF交CD于E,交BC的延长线于F.
(1)若∠B+∠DCF=180°,求证:四边形ABCD是等腰梯形;
(2)若E是线段CD的中点,且CF:CB=1:3,AD=6,求梯形ABCD中位线的长.
最佳答案
  • 五星知识达人网友:躲不过心动
  • 2021-12-30 23:46
(1)证明:∵∠DCB+∠DCF=180°,
又∵∠B+∠DCF=180°,
∴∠B=∠DCB.
∵四边形ABCD是梯形,
∴四边形ABCD是等腰梯形.

(2)解:∵AD∥BC,
∴∠DAE=∠F.
∵E是线段CD的中点,
∴DE=CE.
又∵∠DEA=∠FEC,
∴△ADE≌△FCE,
∴AD=CF,
∵CF:BC=1:3,
∴AD:BC=1:3.
∵AD=6,
∴BC=18.
∴梯形ABCD的中位线=(18+6)÷2=12.解析分析:(1)根据等角的补角相等即可证明梯形的两个底角相等,从而证明了该梯形是等腰梯形;
(2)发现全等三角形,根据全等三角形的性质证明AD=CF,从而得到上下底之间的关系,求得下底长,再根据梯形的中位线定理进行计算.点评:考查了等腰梯形的判定、全等三角形的判定和性质、梯形的中位线定理.
全部回答
  • 1楼网友:患得患失的劫
  • 2021-12-31 00:05
这个问题的回答的对
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯