若函数y=f(x)在R上可导且满足不等式xf′(x)>-f(x)恒成立,且常数a,b满足a>b,则下列不等式一定成立的是A.af(b)>bf(a)B.af(a)>bf
答案:2 悬赏:0 手机版
解决时间 2021-01-03 07:09
- 提问者网友:且恨且铭记
- 2021-01-02 20:17
若函数y=f(x)在R上可导且满足不等式xf′(x)>-f(x)恒成立,且常数a,b满足a>b,则下列不等式一定成立的是A.af(b)>bf(a)B.af(a)>bf(b)C.af(a)<bf(b)D.af(b)<bf(a)
最佳答案
- 五星知识达人网友:时间的尘埃
- 2021-01-02 20:31
B解析分析:由题意构造函数g(x)=xf (x),再由导函数的符号判断出函数g(x)的单调性,由函数g(x)的单调性得到结合常数a,b满足a>b即可得出正确选项.解答:设g(x)=xf(x),则g'(x)=[xf(x)]'=x'f(x)+xf'(x)=xf′(x)+f(x)>0,∴函数g(x)在R上是增函数,∵常数a,b满足a>b,∴且常数a,b满足a>b;故选B.点评:本题考查了由条件构造函数和用导函数的符号判断函数的单调性,利用函数的单调性的关系对不等式进行判断.
全部回答
- 1楼网友:第幾種人
- 2021-01-02 21:05
这个答案应该是对的
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯