f(x)=x2+(a-4)x+4-2a,a属于[-1,1]时,f(x)恒大于0,求x的取值范围.
说明x2是x的平方的意思.请帮我解一下这道题,好吗?
f(x)=x2+(a-4)x+4-2a,a属于[-1,1]时,f(x)恒大于0,求x的取值范围
答案:2 悬赏:70 手机版
解决时间 2021-02-01 08:59
- 提问者网友:美人性情
- 2021-02-01 03:22
最佳答案
- 五星知识达人网友:第四晚心情
- 2021-02-01 04:14
因为这是恒大于0的问题所以 先求 函数的delta
delta= (a-4)^2-4(4-2a)=a^2
因为a^2大于等于0 且当a=0时取到0这一值 且此时方程可以写为:
f(x)=x2-4x+4 =(x-2)^2
而题目条件告诉我们a可以取到0这一点 又方程恒大于零 所以x的定义域不包括x=2这一点
delta= (a-4)^2-4(4-2a)=a^2
因为a^2大于等于0 且当a=0时取到0这一值 且此时方程可以写为:
f(x)=x2-4x+4 =(x-2)^2
而题目条件告诉我们a可以取到0这一点 又方程恒大于零 所以x的定义域不包括x=2这一点
全部回答
- 1楼网友:迷人又混蛋
- 2021-02-01 04:47
f(x)=x^2+(a-4)x+4-2a =(x-2)(x+a-2)>0 当2-a>2 a<0时 x>2-a x<2 当 2-a<2 a>0时 x<2-a x>2
x=2-a时,只要x不等于2
综上当-1=<a<0时, x>2-a x<2 当 2-a<2 a>0时 x<2-a x>2 x=2-a时,只要x不等于2
1<=2-a<=3 所以在[-1,1]上x>3或x<1时f(x)=x^2+(a-4)x+4-2a的值恒大于0
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯