永发信息网

已知圆直经如何求出该圆的内接正多边形的边长

答案:2  悬赏:0  手机版
解决时间 2021-02-04 11:59
  • 提问者网友:杀手的诗
  • 2021-02-04 07:20
已知圆直经如何求出该圆的内接正多边形的边长
最佳答案
  • 五星知识达人网友:英雄的欲望
  • 2021-02-04 07:43
做辅助线,连接圆点到俩个相邻的内接点,在做过圆点垂直前面说的两点所在的边长,再有勾股定理算
全部回答
  • 1楼网友:野慌
  • 2021-02-04 07:53
一)观察、分析、归纳: 观察、分析:1.等边三角形的边、角各有什么性质? 2.正方形的边、角各有什么性质? 归纳:等边三角形与正方形的边、角性质的共同点. 教师组织学生进行,并可以提问学生问题. (二)正多边形的概念: (1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形. (2)概念理解: ①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,…….) ②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么? 矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等. (三)分析、发现: 问题:正多边形与圆有什么关系呢? 发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆. 分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢? (四)多边形和圆的关系的定理 定理:把圆分成n(n≥3)等份: (1)依次连结各分点所得的多边形是这个圆的内接正n边形; (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形. 我们以n=5的情况进行证明. 已知:⊙o中, ====,tp、pq、qr、rs、st分别是经过点a、b、c、d、e的⊙o的切线. 求证:(1)五边形abcde是⊙o的内接正五边形; (2)五边形pqrst是⊙o的外切正五边形. 证明:(略) 引导学生分析、归纳证明思路: 弧相等 说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形;②经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形. (2)要注意定理中的“依次”、“相邻”等条件. (3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形. (五)初步应用 p157练习 1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么? 2.求证:正五边形的对角线相等. 3.如图,已知点a、b、c、d、e是⊙o的5等分点,画出⊙o的内接和外切正五边形. (六)小结: 知识:(1)正多边形的概念.(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形. 能力和方法:正多边形的证明方法和思路,正多边形判断能力 (七)作业 教材p172习题a组2、3.教学设计示例2 教学目标 : (1)理解正多边形与圆的关系定理; (2)理解正多边形的对称性和边数相同的正多边形相似的性质; (3)理解正多边形的中心、半径、边心距、中心角等概念; (4)通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力; 教学重点: 理解正多边形的中心、半径、边心距、中心角的概念和性质定理. 教学难点 : 对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解. 教学活动设计: (一)提出问题: 问题:上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.反过来,是否每一个正多边形都有一个外接圆和内切圆呢? (二)实践与探究: 组织学生自己完成以下活动. 实践:1、作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么? 2、作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么? 探究1:当三角形为正三角形时,它的外接圆和内切圆有什么关系? 探究2:(1)正方形有外接圆吗?若有外接圆的圆心在哪?(正方形对角线的交点.) (2)根据正方形的哪个性质证明对角线的交点是它的外接圆圆心? (3)正方形有内切圆吗?圆心在哪?半径是谁? (三)拓展、推理、归纳: (1)拓展、推理: 过正五边形abcde的顶点a、b、c、作⊙o连结oa、ob、oc、od. 同理,点e在⊙o上. 所以正五边形abcde有一个外接圆⊙o. 因为正五边形abcde的各边是⊙o中相等的弦,所以弦心距相等.因此,以点o为圆心,以弦心距(oh)为半径的圆与正五边形的各边都相切.可见正五边形abcde还有一个以o为圆心的内切圆. (2)归纳: 正五边形的任意三个顶点都不在同一条直线上 它的任意三个顶点确定一个圆,即确定了圆心和半径. 其他两个顶点到圆心的距离都等于半径. 正五边形的各顶点共圆. 正五边形有外接圆. 圆心到各边的距离相等. 正五边形有内切圆,它的圆心是外接圆的圆心,半径是圆心到任意一边的距离. 照此法证明,正六边形、正七边形、…正n边形都有一个外接圆和内切圆. 定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于 .
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯