永发信息网

设(x,Y)的联合密度为f(x,y)=2y(1-x),0<=x<=1, 0<=y<=x,求联合分布

答案:1  悬赏:60  手机版
解决时间 2021-11-21 17:56
  • 提问者网友:暮烟疏雨之际
  • 2021-11-21 10:36
设(x,Y)的联合密度为f(x,y)=2y(1-x),0<=x<=1, 0<=y<=x,求联合分布
最佳答案
  • 五星知识达人网友:执傲
  • 2021-11-21 11:34
解:fX(x)=∫(-∞,+∞)f(x,y)dy=3x2,0<=x<=1,其他为0
fY(y)=∫(-∞,+∞)f(x,y)dx=2y, 0<=y<=1,其他为0
(2)f(x,y)=fX(x)fY(y)
所以,x,y独立
(3)P(x>y)=∫∫(-∞,+∞)f(x,y)dxdy 积分区域为x>y
=∫(0,1)∫(0,x)f(x,y)dydx=3/5
(4)F(x,y)= ∫∫(-∞,+∞)f(x,y)dxdy ,
x<0,或者y<0,
F(x,y)=0
0<=x<=1,0<=y<=1
F(x,y)= ∫(-∞,x)∫(-∞,y)f(x,y)dxdy =x3y2
0<=x<=1,y>1
F(x,y)= ∫(-∞,x)∫(-∞,1)f(x,y)dxdy =x3
0<=y<=1,x>1
F(x,y)= ∫(-∞,1)∫(-∞,y)f(x,y)dxdy =y2
x>1,y>1
F(x,y)=1
如有意见,欢迎讨论,共同学习;如有帮助,请选为满意回答!
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯