永发信息网

设A,B为n阶实对称方阵,且A正定,则存在实可逆矩阵P,使 P’ AP=E,同时P’ BP=diag(λ1,…,λn).

答案:1  悬赏:70  手机版
解决时间 2021-08-20 13:23
  • 提问者网友:愿为果
  • 2021-08-19 19:00
设A,B为n阶实对称方阵,且A正定,则存在实可逆矩阵P,使 P' AP=E,同时P' BP=diag(λ1,…,λn).
最佳答案
  • 五星知识达人网友:煞尾
  • 2021-08-19 19:53

实对称矩阵必可以相似对角化,正定,那么所有特征值大于0,所以和单位矩阵合同,
再问: 能不能给个证明过程?考试时用!可逆矩阵p能表达出来吗?
再答: 不会吧?这怎么能写出具体的啊。矩阵都不知道,什么样子也不知道
再答: 只好叙述吧 不过你可以写出n阶矩阵,,叙述一下,,什么施密特正交化。。。。。
再问: 因为 A 正定 所以存在可逆矩阵C 使得 C'AC = E. 对实对称矩阵C'BC, 存在正交矩阵D, 使得 D'(C'BC)D 为对角矩阵 而 D'(C'AC)D = D'D = E 也是对角矩阵 故令P = CD 即满足要求 这样可以否?
再答: 可以。。。没得问题


我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯