定义在(0,+∞)上的函数f(x),对于任意的m,n∈(0,+∞),都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)<0
判断并证明f(x)在定义域内的单调性
2.当f(2)=1/2时,解不等式f(ax+4)>1
定义在(0,+∞)上的函数f(x),对于任意的m,n∈(0,+∞),都有f(mn)=f(m)+f(n)成立,当x>1时,
答案:1 悬赏:10 手机版
解决时间 2021-08-01 16:38
- 提问者网友:箛茗
- 2021-07-31 17:16
最佳答案
- 五星知识达人网友:独行浪子会拥风
- 2021-07-31 18:19
一、f(1)=2f(1),f(1)=0,设m>n>0,则m/n>1,f(n)+f(1/n)=f(1)=0,f(m)-f(n)=f(m)+f(1/n)=f(m/n)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯