高数一里面,隐函数求导与微分方程有什么关系?谢谢
答案:2 悬赏:70 手机版
解决时间 2021-12-18 11:05
- 提问者网友:嗝是迷路的屁
- 2021-12-17 15:05
高数一里面,隐函数求导与微分方程有什么关系?谢谢
最佳答案
- 五星知识达人网友:第四晚心情
- 2021-12-17 15:24
答:
1、形如F(x,y)=0所定义的函数中,如果存在y=y(x),那么对于dy/dx所能确定的函数,就称之为隐函数求导。同样的,在三元函数中:F(x,y,z)=0,如果存在z=z(x,y),那么对于∂z/∂x,∂z/∂y所能确定的函数,就称之为三元函数F(x,y,z)=0的隐函数求导。其本质就是多元函数中自变量在相互关联时所确定的导数问题。
2、在函数中,存在微分变量,并能根据这种函数得出微分变量和自变量之间等式的函数,称之为微分方程。需要注意的一点是,微分方程类型繁多,能求出解的仅仅是九牛一毛。微分方程的本质就是微分变量和自变量之间的函数关系。
3、隐函数和微分方程本质没有区别,都是表示了变量和微分之间的函数关系;
4、隐函数和微分方程有联系,隐函数求导出的结果往往就是微分方程,微分方程的通解,往往就是隐函数中变量之间的关联关系,但是也有例外。
5、隐函数和微分方程的共同点就是:他们都具有微分等式(全微分形式)
1、形如F(x,y)=0所定义的函数中,如果存在y=y(x),那么对于dy/dx所能确定的函数,就称之为隐函数求导。同样的,在三元函数中:F(x,y,z)=0,如果存在z=z(x,y),那么对于∂z/∂x,∂z/∂y所能确定的函数,就称之为三元函数F(x,y,z)=0的隐函数求导。其本质就是多元函数中自变量在相互关联时所确定的导数问题。
2、在函数中,存在微分变量,并能根据这种函数得出微分变量和自变量之间等式的函数,称之为微分方程。需要注意的一点是,微分方程类型繁多,能求出解的仅仅是九牛一毛。微分方程的本质就是微分变量和自变量之间的函数关系。
3、隐函数和微分方程本质没有区别,都是表示了变量和微分之间的函数关系;
4、隐函数和微分方程有联系,隐函数求导出的结果往往就是微分方程,微分方程的通解,往往就是隐函数中变量之间的关联关系,但是也有例外。
5、隐函数和微分方程的共同点就是:他们都具有微分等式(全微分形式)
全部回答
- 1楼网友:拾荒鲤
- 2021-12-17 16:43
y=cos(x+y)
y'=-cos(x+y)*(1+y')
y'(1-cos(x+y))=cos(x+y)
y'=[cos(x+y)]/[(1-cos(x+y))]
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯