急!!!在数列{an}中a1=1,a(n+1)=(1+1/n)an+[(n+1)/2的n次方],设bn=an/n,求{bn}的通项,{an}的前n项和Sn
答案:1 悬赏:80 手机版
解决时间 2021-05-08 15:14
- 提问者网友:王者佥
- 2021-05-08 12:12
急!!!在数列{an}中a1=1,a(n+1)=(1+1/n)an+[(n+1)/2的n次方],设bn=an/n,求{bn}的通项,{an}的前n项和Sn
最佳答案
- 五星知识达人网友:轮獄道
- 2021-05-08 13:33
A(n+1)=(n+1)An/n+(n+1)/2^n
A(n+1)/(n+1)=An/n+1/2^n
依此类推
An/n=A(n-1)/(n-1)+1/2^(n-1)
A(n-1)/(n-1)=A(n-2)/(n-2)+1/2^(n-2)
……
A2/2=A1/1+1/2^1
上式相加,相同项消去
An/n=A1/1+(1/2^1+1/2^2+……+1/2^(n-1))
=1+1/2×(1-(1/2)^(n-1))/(1-1/2)
=2-1/2^n
Bn=2-1/2^n
2.
An/n=2-1/2^n
An=2n-n/2^n
{An}分为两部分,2n是等差数列,n/2^n是等差数列与等比数列相乘
第一部分求和
Sn1=(2+2n)n/2=(n+1)n
第二部分求和
Sn2=1/2+2/4+3/8+……+n/2^n
两边同乘2
2Sn2=1+2/2+3/4+……+n/2^(n-1)
两式错位相减
2Sn2-Sn2=1+[1/2+1/4+1/8……+1/2^(n-1)]-n/2^n
=1+1/2×(1-(1/2)^(n-1))/(1-1/2)-n/2^n
=2-(n+2)/2^n
Sn=Sn1-Sn2
=n^2+n-2+(n+2)/2^n
=(n-1)(n+2)+(n+2)/2^n
A(n+1)/(n+1)=An/n+1/2^n
依此类推
An/n=A(n-1)/(n-1)+1/2^(n-1)
A(n-1)/(n-1)=A(n-2)/(n-2)+1/2^(n-2)
……
A2/2=A1/1+1/2^1
上式相加,相同项消去
An/n=A1/1+(1/2^1+1/2^2+……+1/2^(n-1))
=1+1/2×(1-(1/2)^(n-1))/(1-1/2)
=2-1/2^n
Bn=2-1/2^n
2.
An/n=2-1/2^n
An=2n-n/2^n
{An}分为两部分,2n是等差数列,n/2^n是等差数列与等比数列相乘
第一部分求和
Sn1=(2+2n)n/2=(n+1)n
第二部分求和
Sn2=1/2+2/4+3/8+……+n/2^n
两边同乘2
2Sn2=1+2/2+3/4+……+n/2^(n-1)
两式错位相减
2Sn2-Sn2=1+[1/2+1/4+1/8……+1/2^(n-1)]-n/2^n
=1+1/2×(1-(1/2)^(n-1))/(1-1/2)-n/2^n
=2-(n+2)/2^n
Sn=Sn1-Sn2
=n^2+n-2+(n+2)/2^n
=(n-1)(n+2)+(n+2)/2^n
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯