关于角平分线的性质的
1、如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE,则∠B与∠ADC互补,为什么?
2、如图,在△ABC中,E、F分别是AB、AC上的点.①AD平分∠BAC;②DE⊥AB,DF⊥AC;③AD⊥EF.以此三个中的两个为条件,另一个为结论,可构成三个命题,即:①②→③,①③→②,②③→①.
(1)试判断上述三个命题是否正确(直接作答);
(2)请证明你认为正确的命题.
关于角平分线的性质的1、如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE,则∠B与∠ADC互
答案:1 悬赏:40 手机版
解决时间 2021-07-19 12:41
- 提问者网友:最爱你的唇
- 2021-07-19 02:34
最佳答案
- 五星知识达人网友:归鹤鸣
- 2021-07-19 03:12
过C做AB垂线交AB于F,有△CEB≌△CFD
这因为:1,CE=CF(角平分想性质)
2,角CEB=角CFD=90度
3,EB=DF(因为 ①AE=AF,②AD+AB=2AE < 因为没有图,我假设AB>AD.> 又AB=AE+EB AD=AF-DF AE=AF 故,AE+EB+AF-DF=2AE 化简有
EB=DF)
因而∠CBE=∠CDF 故而有题目所讲的两个角互补.
①②→③对
设AD与EF的交点为H
由角平分线性质知AE=AF,即△AEF为等腰△
故角分线垂直底边,得证
①③→②错
②③→①对
记AD中点为M,连结ME,MF
有ME=MF=0.5AD
又MH为公共边,∠MHE=∠MHF=90度
△MHF≌△MHE 故,HF=HE
又AE=AF,由角分线性质
故△AEH≌△AFH
即可得证
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯