在△ABC中,∠A:∠B:∠C=3:4:5,BD、CE分别是AC、AB边上的高,BD、CE相交于点H,求∠BHC的度数.
答案:2 悬赏:40 手机版
解决时间 2021-04-11 22:10
- 提问者网友:凉末
- 2021-04-10 23:41
在△ABC中,∠A:∠B:∠C=3:4:5,BD、CE分别是AC、AB边上的高,BD、CE相交于点H,求∠BHC的度数.
最佳答案
- 五星知识达人网友:深街酒徒
- 2021-04-10 23:50
解:设∠A=3x,∠B=4x,∠C=5x,
∵∠A+∠B+∠C=180°,
∴3x+4x+5x=180°,
∴x=15°,
∴∠A=45°,∠B=60°,∠C=75°.
∵四边形AEHD内角和等于360°,
∴∠A+∠AEH+∠ADH+∠EHD=360°;
∵CE⊥AB;BD⊥AC,
∴∠AEH=90°,∠ADH=90°,
∴45°+90°+90°+∠EHD=360°,
∴∠EHD=135°.
则∠BHC=∠EHD=135°.解析分析:本题先根据三角形内角和定理及∠A:∠B:∠C=3:4:5,求出△ABC三个内角的度数;然后利用垂直定义及四边形AEHD的内角和等于360°,求出∠EHD的度数,即∠BHC的度数.点评:本题主要考查三角形的内角和定理、四边形内角和定理及垂直定义,解题的关键是熟练掌握三角形的内角和定理及其运用.
∵∠A+∠B+∠C=180°,
∴3x+4x+5x=180°,
∴x=15°,
∴∠A=45°,∠B=60°,∠C=75°.
∵四边形AEHD内角和等于360°,
∴∠A+∠AEH+∠ADH+∠EHD=360°;
∵CE⊥AB;BD⊥AC,
∴∠AEH=90°,∠ADH=90°,
∴45°+90°+90°+∠EHD=360°,
∴∠EHD=135°.
则∠BHC=∠EHD=135°.解析分析:本题先根据三角形内角和定理及∠A:∠B:∠C=3:4:5,求出△ABC三个内角的度数;然后利用垂直定义及四边形AEHD的内角和等于360°,求出∠EHD的度数,即∠BHC的度数.点评:本题主要考查三角形的内角和定理、四边形内角和定理及垂直定义,解题的关键是熟练掌握三角形的内角和定理及其运用.
全部回答
- 1楼网友:长青诗
- 2021-04-11 00:57
感谢回答,我学习了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯