永发信息网

数学中什么叫素数?

答案:6  悬赏:20  手机版
解决时间 2021-08-17 02:07
  • 提问者网友:咪咪
  • 2021-08-16 18:54
谁救救我吧。。。。
最佳答案
  • 五星知识达人网友:妄饮晩冬酒
  • 2021-08-16 19:30

不可以在分成 x乘y的形式(x 和y不为1或他本身)


如4 可以分成2×2的形式 所以他不是素数


2 只可以分成1×2的形式  但是我刚才已经说过  xy不为它本身或1。所以2 是素数


同样3  5  7只可分为1×它本身 所以他们为素数


而 4 6 8 可以分为除1×它本身的数字  还可以分为其他数字相乘(6 还可分为2×3   8还可分为2×4   16 可分为4×4 或2×8)所以他们不是素数  是合数

全部回答
  • 1楼网友:归鹤鸣
  • 2021-08-17 00:05

就是质数    触1和本身之外不能被除的数    像  2    3    5   7   11   13    17......

  • 2楼网友:英雄的欲望
  • 2021-08-16 23:27
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。
  • 3楼网友:杯酒困英雄
  • 2021-08-16 23:16
素数就是质数 像 2 3 5 7 11
  • 4楼网友:动情书生
  • 2021-08-16 21:39
素数是大于1的只有1和它本身两个因数的整数
  • 5楼网友:酒者煙囻
  • 2021-08-16 20:17
素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。 有的数,如果单凭印象去捉摸,是无法确定它到底是不是素数的。有些数则可以马上说出它不是素数。一个数,不管它有多大,只要它的个位数是2、4、5、6、8或0,就不可能是素数。此外,一个数的各位数字之和要是可以被3整除的话,它也不可能是素数。但如果它的个位数是1、3、7或9,而且它的各位数字之和不能被3整除,那么,它就可能是素数(但也可能不是素数)。没有任何现成的公式可以告诉你一个数到底是不是素数。你只能试试看能不能将这个数表示为两个比它小的数的乘积。 找素数的一种方法是从2开始用“是则留下,不是则去掉”的方法把所有的数列出来(一直列到你不想再往下列为止,比方说,一直列到10,000)。 第一个数是2,它是一个素数,所以应当把它留下来,然后继续往下数,每隔一个数删去一个数,这样就能把所有能被2整除、因而不是素数的数都去掉。在留 下的最小的数当中,排在2后面的是3,这是第二个素数,因此应该把它留下,然后从它开始往后数,每隔两个数删去一个,这样就能把所有能被3整除的数全 都去掉。下一个未去掉的数是5,然后往后每隔4个数删去一个,以除去所有能被5整除的数。再下一个数是7,往后每隔6个数删去一个;再下一个数是11 ,往后每隔10个数删一个;再下一个是13,往后每隔12个数删一个。……就这样依法做下去。 你也许会认为,照这样删下去,随着删去的数越来越多,最后将会出现这样的情况;某一个数后面的数会统统被删去崮此在某一个最大的素数后面,再也不 会有素数了。但是实际上,这样的情况是不会出现的。不管你取的数是多大,百万也好,万万也好,总还会有没有被删去的、比它大的素数。 事实上,早在公元前300年,希腊数学家欧几里得就已证明过,不论你取的数是多大,肯定还会有比它大的素数,假设你取出前6个素数,并把它们乘在 一起:2*3*5*7*11*13=30030,然后再加上1,得30031。这个数不能被2、3、5、7、11、13整除,因为除的结果,每次都会余1。如果30031除了自己以外不能被任何数整除,它就是素数。如果能被其它数整除,那么30031所分解成的几个数,一定都大于13。事实上,3 0031=59*509。 对于前一百个、前一亿个或前任意多个素数,都可以这样做。如果算出了它们的乘积后再加上1,那么,所得的数或者是一个素数,或者是比所列出的素数还要大的几个素数的乘积。不论所取的数有多大,总有比它大的素数,因此,素数的数目是无限的。 随着数的增大,我们会一次又一次地遇到两个都是素数的相邻奇数对,如5,7;11,13;17,19;29,31;41,43;等等。就数学家所能及的数来说,它们总是能找到这样的素数对。这样的素数对到底是不是有无限 个呢?谁也不知道。数学家认为是无限的,但他们从来没能证明它。这就是数学家为什么对素数感兴趣的原因。素数为数学家提供了一些看起来很容易、但事实 却非常难以解决的问题,他们目前还没能对付这个挑战哩。 这个问题到底有什么用处呢?它除了似乎可以增添一些趣味以外,什么用处也没有。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯