永发信息网

f(x)=x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1在有理数域、实数域上的不可约多项式乘积

答案:2  悬赏:30  手机版
解决时间 2021-11-16 10:39
  • 提问者网友:沉默菋噵
  • 2021-11-16 03:31
f(x)=x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1在有理数域、实数域上的不可约多项式乘积
最佳答案
  • 五星知识达人网友:毛毛
  • 2021-11-16 04:07
有理数域:
f(x)=(x^10-1)/(x-1)=(x^5-1)(x^5+1)/(x-1)=(x+1)(x^4+x^3+x^2+x+1)(x^4-x^3+x^2-x+1)。
那两个四次项没法再约了,原因是根都是复数,看了实数域分解就明白了。

实数域:
f(x)=(x+1)(x^2-2cos(pi/5*2)x+1)(x^2-2cos(pi/5*4)x+1)(x^2-2cos(pi/5)x+1)(x^2-2cos(pi/5*3)x+1)。
因为f(x)=(x^10-1)/(x-1),x^10-1=0的根都是复数exp(j*2*pi/10*k),一个个列出来再把共轭的那些对儿组合下就可以了。
全部回答
  • 1楼网友:蕴藏春秋
  • 2021-11-16 04:16
f(x)=x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1=(x+1)(x^8+x^6+x^4+x^2+1)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯