已知a、b、c是△ABC的三边,且满足a4+b2c2=b4+a2c2,试判断△ABC的形状.阅读下面解题过程:
解:由a4+b2c2=b4+a2c2得:
a4-b4=a2c2-b2c2①
(a2+b2)(a2-b2)=c2(a2-b2) ②
即a2+b2=c2③
∴△ABC为Rt△. ④
试问:以上解题过程是否正确:______
若不正确,请指出错在哪一步?(填代号)______
错误原因是______
本题的结论应为______.
已知a、b、c是△ABC的三边,且满足a4+b2c2=b4+a2c2,试判断△ABC的形状.阅读下面解题过程:
答案:1 悬赏:50 手机版
解决时间 2021-07-26 06:20
- 提问者网友:箛茗
- 2021-07-25 18:09
最佳答案
- 五星知识达人网友:刀戟声无边
- 2021-07-25 18:37
由a4+b2c2=b4+a2c2得:
a4-b4=a2c2-b2c2,
(a2+b2)(a2-b2)=c2(a2-b2),
∴(a2+b2)(a2-b2)-c2(a2-b2)=0,
∴(a2-b2)(a2+b2-c2)=0,
∴(a2-b2)=0或a2+b2-c2=0,
∴△ABC为等腰三角形或直角三角形.
试题解析:
由于②到③时等式两边都除以了a2-b2,如果a2-b2=0,根据等式的性质可知,此时不一定有③成立.
名师点评:
本题考点: 勾股定理的逆定理.
考点点评: 本题主要考查了等式的性质以及等腰三角形、直角三角形的判定.
等式的性质:等式的两边乘以或除以同一个不等于0的数,所得结果仍是等式.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯