什么是模糊数学?
答案:2 悬赏:80 手机版
解决时间 2021-07-29 13:04
- 提问者网友:低吟詩仙的傷
- 2021-07-28 22:15
什么是模糊数学?
最佳答案
- 五星知识达人网友:动情书生
- 2021-07-28 23:19
模糊数学的定义 模糊数学又称FUZZY 数学。“模糊”二字译自英文“FUZZY ”一词,该词除了有模糊意思外,还有“不分明”等含意。有人主张音义兼顾译之为“乏晰”等。但他们都没有“模糊”含意深刻。
模糊数学是研究和处理模糊性现象的一种数学理论和方法 。 1965 年美国控制论学者L.A.扎德发表论文《模糊集合》,标志着这门新学科的诞生。现代数学建立在集合论的基础上。一组对象确定一组属性,人们可以通过指明属性来说明概念,也可以通过指明对象来说明。符合概念的那些对象的全体叫做这个概念的外延,外延实际上就是集合。一切现实的理论系统都有可能纳入集合描述的数学框架。经典的集合论只把自己的表现力限制在那些有明确外延的概念和事物上,它明确地规定:每一个集合都必须由确定的元素所构成,元素对集合的隶属关系必须是明确的。对模糊性的数学处理是以将经典的集合论扩展为模糊集合论为基础的,乘积空间中的模糊子集就给出了一对元素间的模糊关系。对模糊现象的数学处理就是在这个基础上展开的。
从纯数学角度看,集合概念的扩充使许多数学分支都增添了新的内容。例如模糊拓扑学、不分明线性空间、模糊代数学、模糊分析学、模糊测度与积分、模糊群、模糊范畴、模糊图论、模糊概率统计、模糊逻辑学等。其中有些领域已有比较深入的研究。
模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。模糊性数学最重要的应用领域应是计算机智能。它已经被用于专家系统和知识工程等方面,在各个领域中发挥看非常重要的作用,并已获得巨大的经济效益。
模糊数学是研究和处理模糊性现象的一种数学理论和方法 。 1965 年美国控制论学者L.A.扎德发表论文《模糊集合》,标志着这门新学科的诞生。现代数学建立在集合论的基础上。一组对象确定一组属性,人们可以通过指明属性来说明概念,也可以通过指明对象来说明。符合概念的那些对象的全体叫做这个概念的外延,外延实际上就是集合。一切现实的理论系统都有可能纳入集合描述的数学框架。经典的集合论只把自己的表现力限制在那些有明确外延的概念和事物上,它明确地规定:每一个集合都必须由确定的元素所构成,元素对集合的隶属关系必须是明确的。对模糊性的数学处理是以将经典的集合论扩展为模糊集合论为基础的,乘积空间中的模糊子集就给出了一对元素间的模糊关系。对模糊现象的数学处理就是在这个基础上展开的。
从纯数学角度看,集合概念的扩充使许多数学分支都增添了新的内容。例如模糊拓扑学、不分明线性空间、模糊代数学、模糊分析学、模糊测度与积分、模糊群、模糊范畴、模糊图论、模糊概率统计、模糊逻辑学等。其中有些领域已有比较深入的研究。
模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。模糊性数学最重要的应用领域应是计算机智能。它已经被用于专家系统和知识工程等方面,在各个领域中发挥看非常重要的作用,并已获得巨大的经济效益。
全部回答
- 1楼网友:傲气稳了全场
- 2021-07-28 23:25
1、模糊数学作为一个新兴的数学分支,使过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而显示了强大的生命力和渗透力,使数学的应用范围大大扩展
2、模糊数学的研究内容主要有以下三个方面:
第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系
第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。
第三,研究模糊数学的应用。
3、模糊数学的应用
模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯