设f(x)是R上的函数.且满足f(0)=1,并且对任意实数x ,y,有f(x-y)= f(x)-y(2x-y+1),求f(x)的表达式
设f(x)是R上的函数.且满足f(0)=1,并且对任意实数x ,y,有f(x-y)= f(x)-y(2x-y+1),求f
答案:1 悬赏:70 手机版
解决时间 2021-06-09 06:35
- 提问者网友:骑士
- 2021-06-08 23:46
最佳答案
- 五星知识达人网友:往事隔山水
- 2021-06-09 01:18
因为对一切实数x,y都成立
令x=y
则f(x-y)=f(x)-y(2x-Y+1)
等价于f(0)=f(x)-x(2x-x+1)
又因为f(0)=1
所以f(x)-x(2x-x+1)=1
解得f(x)=x^2+x+1
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯