永发信息网

函数y=sin(3x+π/4)+2cos(3x+π/4)的最小正周期是

答案:3  悬赏:0  手机版
解决时间 2021-01-26 16:11
  • 提问者网友:聂風
  • 2021-01-25 20:58
函数y=sin(3x+π/4)+2cos(3x+π/4)的最小正周期是
最佳答案
  • 五星知识达人网友:执傲
  • 2021-01-25 22:02
令cosa=√5/5,sina=2√5/5

y=sin(3x+π/4)+2cos(3x+π/4)
=√5[√5/5sin(3x+π/4)+2√5/5cos(3x+π/4)]
=√5[√5/5sin(3x+π/4)+2√5/5cos(3x+π/4)]
=√5[sin(3x+π/4)cosa+cos(3x+π/4)sina]
=√5sin(3x+π/4+a)

T=2π/3
全部回答
  • 1楼网友:像个废品
  • 2021-01-26 00:26

y=sin(3x+π/4)+2cos(3x+π/4)

=√5[(1/√5)sin(3x+π/4)+(2/√5)cos(3x+π/4)]

=√5sin(3x+π/4+α)

其中sinα=2/√5

故原函数的最小正周期为2π/3

  • 2楼网友:千杯敬自由
  • 2021-01-25 23:16
y=sin3xcosπ/4+cos3xsinπ/4+2cos3xcosπ/4-2sin3xsinπ/4 =√2/2*(sin3x+cos3x+2cos3x-2sin3x) =-√2/2*(sin3x-3cos3x) =-√2/2*√(1+9)sin(3x-z) =-√10sin(3x-z) 其中tanz=3/1=3 所以T=2π/3
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯