一元四次方程的解法一元四次方程能用公式解吗?
答案:2 悬赏:10 手机版
解决时间 2021-01-29 22:32
- 提问者网友:龅牙恐龙妹
- 2021-01-29 13:01
一元四次方程的解法一元四次方程能用公式解吗?
最佳答案
- 五星知识达人网友:一把行者刀
- 2021-01-29 14:18
把解四次方程的问题归为解一个三次方程和两个二次方程的问题.利用二次方程和三次方程的求根公式,四次方程的根可以直接用方程的系数表示出来.一元四次方程的解法参考:https://elearning.emath.pu.edu.tw/mkuo/2002%E6%95%B8%E5%AD%B8%E5%8F%B2/%E5%9B%9B%E6%AC%A1%E6%96%B9%E7%A8%8B%E7%9A%84%E8%A7%A3%E6%B3%95.htm一元三次方程的解法可以吗?一元三次方程求根公式的解法 -------摘自高中数学网站 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型.一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式.归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和.归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B.方法如下:(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了.x^y就是x的y次方 好复杂的说 塔塔利亚发现的一元三次方程的解法 一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去.所以我们只要考虑形如 x3=px+q 的三次方程.假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数.代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理
全部回答
- 1楼网友:拾荒鲤
- 2021-01-29 15:05
回答的不错
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯