体心立方堆积中 设边长为a 金属原子球半径为r 怎么得到 根号3a 等于4r的
答案:1 悬赏:70 手机版
解决时间 2021-03-29 08:01
- 提问者网友:我一贱你就笑
- 2021-03-29 01:23
体心立方堆积中 设边长为a 金属原子球半径为r 怎么得到 根号3a 等于4r的
最佳答案
- 五星知识达人网友:从此江山别
- 2021-03-29 03:01
先把晶胞图画出来,再找晶胞参数即边长a,与小球半径r,之间的关系.
体心立方堆积:即8个小球在立方体的顶点,1个小球在立方体的中心.
你会发现只有体对角线上的3个小球是靠着的
即得到,体对角线=根号(3)×a=4r
即,r=根号(3)×a/4
金刚石型堆积:8个小球在立方体的8个顶点,6个小球在6个面的中心,还有4个小球在大立方体内的8个小立方体中的4个的中心,即上面2个,下面错开的2个.
从体对角线的方向看去,形成了塔形的空间网状结构.
你就发现,相邻2个靠着的小球的距离,即2r,就是大立方体的体对角线的1/4
即得到,2r=根号(3)×a/4
即,r=根号(3)×a/8
体心立方堆积:即8个小球在立方体的顶点,1个小球在立方体的中心.
你会发现只有体对角线上的3个小球是靠着的
即得到,体对角线=根号(3)×a=4r
即,r=根号(3)×a/4
金刚石型堆积:8个小球在立方体的8个顶点,6个小球在6个面的中心,还有4个小球在大立方体内的8个小立方体中的4个的中心,即上面2个,下面错开的2个.
从体对角线的方向看去,形成了塔形的空间网状结构.
你就发现,相邻2个靠着的小球的距离,即2r,就是大立方体的体对角线的1/4
即得到,2r=根号(3)×a/4
即,r=根号(3)×a/8
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯