已知F1F2为椭圆x²/a²+y²/b²=1(a>b>0)的焦点,M为椭圆上一点,MF垂直于x轴
答案:1 悬赏:50 手机版
解决时间 2021-01-28 11:57
- 提问者网友:贪了杯
- 2021-01-27 14:43
已知F1F2为椭圆x²/a²+y²/b²=1(a>b>0)的焦点,M为椭圆上一点,MF垂直于x轴
最佳答案
- 五星知识达人网友:孤老序
- 2021-01-27 14:48
假设是是MF1垂直x轴
F1(-c,0)
则M(-c,m)
代入
c²/a²+m²/b²=1
m²/b²=(a²-c²)/a²=b²/a²
假设M在第二象限
则m=b²/a
则MF1=b²/a
因为MF1+MF2=2a
所以 MF2=2a-b²/a
因为∠F1MF2=60°
所以MF1/MF2=cos60=1/2
所以(b²/a)/(2a-b²/a)=1/2
2b²/a=2a-b²/a
b²=2a²/3
c²=a²-b²=a²/3
所以e=c/a=√3/3
F1(-c,0)
则M(-c,m)
代入
c²/a²+m²/b²=1
m²/b²=(a²-c²)/a²=b²/a²
假设M在第二象限
则m=b²/a
则MF1=b²/a
因为MF1+MF2=2a
所以 MF2=2a-b²/a
因为∠F1MF2=60°
所以MF1/MF2=cos60=1/2
所以(b²/a)/(2a-b²/a)=1/2
2b²/a=2a-b²/a
b²=2a²/3
c²=a²-b²=a²/3
所以e=c/a=√3/3
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯